
Elmer 160 Lesson 7
Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Revised: 20 Jan 2004 - 02:08 PM Page 1 of 8
Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Lesson 7
Multiple Precision Arithmetic

Overview

Introduction The PIC stores data as 8-bit bytes. Up until now, we have only used values of 8 bits
or less. But what if we have a greater range of values? In this section, we will
examine addition and subtraction of larger numbers.

In this section Following is a list of topics in this section:

Description See Page

Representing Larger Numbers 2

Adding Larger Numbers 3

Subtracting Larger Numbers 4

Testing the Routines 5

Still Larger Numbers 7

Wrap Up 8

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Page 2 of 8 Revised: 20 Jan 2004 - 02:08 PM
John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Representing Larger Numbers

Introduction The PIC has an 8 bit data word. How can numbers larger than 255 be handled? The
answer is to use multiple bytes to store the value.

Interpretation Throughout this course, we will be faced with the reality that symbols in our
programs only have what meaning that we assign to them. While this is true of
higher level computer languages as well, in assembler, there is almost nothing that
carries meaning by itself; things only mean what we want them to mean.

In lesson 4, we assigned a value to a symbol, and used that to reference a place in
memory. The value, (Spot1 in that case) “meant” to us a location in the file register
memory. In lesson 6, we assigned a value to the symbol XMTR and interpreted it as
a bit number. These assignments can carry whatever interpretation we wish to apply.

The same is true of the values stored in memory. We have already talked about how
a byte could be interpreted as a value from 0 to 255, or as a value from -128 to +127,
depending on what we want. However, the byte might also represent a letter, several
small numbers packed together, or even just a jumble of individual bits.

Multiple digit
representation

This happens in normal arithmetic, too. In the decimal numbering system, a digit can
have one of ten possible values, from zero through nine. However, we can represent
a number of arbitrary size by simply stringing digits together. Each digit to the left is
interpreted as meaning ten times more than the digit to its right. So the graphic ‘6’
could represent a value of six, or sixty, or six hundred depending on how many digits
are to the right.

Similarly, we could string bytes together and interpret them as representing
successively higher values. Since a byte can have 256 different values, the individual
bytes can represent the one’s place, the 256’s place, the 65536’s place, etc. Because
each individual ‘digit’ has 256 possible values, instead of the 10 in decimal numbers,
the values go up a lot faster. In just four bytes, we can represent over 4 billion
possible values.

Suppose, for example, we wanted to represent 1000 decimal. 1000 decimal is 768
plus 232, so we could represent 1000 as a 3 (768 / 256) with a remainder (digit) of
232.

Little endian or
big endian

You may have heard of the term ‘endian’ . It refers to whether the least significant
byte is stored first or last. In the PC, the least significant byte is stored in the lowest
numbered memory cell (little endian). On the Mac, the most significant byte is stored
in the lowest numbered memory cell (big endian). It turns out that each has its
advantage, and on those machines, that structure is embedded in the hardware.

On the PIC, however, there are no instructions that access more than a single byte,
therefore the PIC has no “endian-ness” . Authors tend to put the low order byte first
in memory for binary values (and interestingly, the opposite for decimal values), but
there is nothing that makes one choice better than another. Indeed, there is no
advantage (other than readability) to having the bytes adjacent!

Elmer 160 Lesson 7
Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Revised: 20 Jan 2004 - 02:08 PM Page 3 of 8
Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Adding Larger Numbers

Introduction If we are going to use multiple bytes to represent larger numbers, we need to know
how to add them if they are to be at all meaningful.

Adding
Algorithm

When we add two numbers of more than one digit in decimal, what do we do? Well,
we start with the least significant digits. We add them, if the result will not fit in a
single digit, we take the part that will not fit, divide it by ten, and we carry it into the
next higher digit. (We might not have thought of the divide part, but if we add eight
and six, we get fourteen. We keep the four, and we carry the ten, but before we use
it, we divide the ten by ten, giving us one.) A little detail you may not have noticed; if
we are adding only two numbers, we never have a carry of more than one.

The same is true in binary. If we add the least significant bytes, and the sum exceeds
what will fit in a single byte, we take the part that will not fit, divide it by 256, and
we carry it to the next byte.

Just as we can in decimal, we can continue this process of adding and carrying for an
arbitrary number of bytes, so we can add numbers of any size we wish.

An Example Imagine we have three, two-byte memory locations set up by the following
statements:

 cbl ock H' 40' 1
 v1_l o ; Var i abl e 1, l ow byt e
 v1_hi ; Var i abl e 1, hi gh byt e
 v2_l o ; Var i abl e 2, l ow byt e
 v2_hi ; Var i abl e 2, hi gh byt e
 r es_l o ; Resul t , l ow byt e
 r es_hi ; Resul t , hi gh byt e
 endc

We could add them as simply as follows (In a subroutine, of course):

Add16
 movf v1_l o, W ; Low byt e f i r s t oper and
 addwf v2_l o, W ; Add i n l ow byt e second oper and
 movwf r es_l o ; St or e r esul t
 movf v1_hi , W ; Pi ck up hi gh byt e f i r s t oper and
 bt f sc STATUS, C ; Was t her e a car r y?
 addl w H' 01' ; Yes, add i n car r y
 addwf v2_hi , W ; Add i n hi gh byt e second oper and
 movwf r es_hi ; St or e hi gh byt e r esul t
 r et ur n

Notice that this is not any different from what we would do if we were adding
decimal numbers by hand.

1 In previous examples, these blocks have always started at H’20’ . There is no magic to the location, though. File register addresses in
the 16F84A run from H’0c’ to H’4f’ . As long as we start after H’0b’ and end before H’50’ we can choose whatever we want. One
minor annoyance, though. The p16f84a include file defines _CP_ON as H’0f’ . Since this definition is encountered before ours, if we
start our use of the memory at H’0c’ , the file register display shows H’0f’ as _CP_ON rather than whatever we have assigned. This
does not affect how the program runs at all, but it is an annoyance when we are debugging.

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Page 4 of 8 Revised: 20 Jan 2004 - 02:08 PM
John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Subtracting Larger Numbers

Introduction Subtraction, like addition, simply follows the rules we learned in grammar school,
except on binary, rather than decimal, values. We address the low order byte first,
remember whether we had a borrow, and then subtract the borrow from the next
higher-order byte.

Subtraction
Routine

The following is an example subtraction using the same variables used above:
; 16 bi t subt r act i on
Sub16
 movf v2_l o, W ; Subt r act t he l ow or der subt r ahend
 subwf v1_l o, W ; f r om l ow or der mi nuend
 movwf r es_l o ; Save of f r esul t
 movf v1_hi , W ; Pi ck up hi gh byt e mi nuend
 bt f ss STATUS, C ; Subt r act t he bor r ow i f needed
 addl w H' FF' ; by addi ng - 1 t o W
 movwf r es_hi ; Tempor ar i l y save of f hi gh byt e
 movf v2_hi , W ; Subt r act hi gh byt e subt r ahend
 subwf r es_hi , F ; f r om saved mi nuend
 r et ur n

This time we do the subtraction when the carry has been cleared because of the
borrow, rather than, as in addition, when set because of a carry.

Although these examples show only two bytes, the same logic can be carried on for
any arbitrary size number.

Elmer 160 Lesson 7
Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Revised: 20 Jan 2004 - 02:08 PM Page 5 of 8
Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Testing the Routines

Introduction In the previous pages, we have written two subroutines, one to do a 16-bit addition,
and another for a 16-bit subtraction. Now let’s write a mainline to test them out.

Writing a test
program

If you have already entered the previous routines, and maybe assembled them, you
have already built the project, added the assembler source file to the project, and put
in the processor, configuration, and include statements. Typically, we like to have
our subroutines at the front, so what you might not have thought of is the got o
statement to skip over the subroutines to get to our mainline.

What we would like to do is to test both the addition and subtraction with and without
a carry and borrow so we can see that we have covered all the cases. If we make v1
be 516 and v2 be 258 we can cover the non-borrow/carry cases :

 ; Set up ar gument s wi t hout car r y/ bor r ow
 movl w H' 04' ; Fi r st val ue H' 0204'
 movwf v1_l o ; = 516 deci mal
 movl w H' 02'
 movwf v1_hi

 movl w H' 02' ; Second val ue H' 0102'
 movwf v2_l o ; = 258 deci mal
 movl w H' 01'
 movwf v2_hi

 ; Do an addi t i on
 cal l Add16 ; Resul t shoul d be 774
 ; or H' 0306'

 ; Do a subt r act i on
 cal l Sub16 ; Resul t shoul d be 258
 ; or H' 0102'

After you have stepped through each of the routines to satisfy yourself that you
understand what is going on, try the following; Step down to the cal l instruction,
then click on the step over button. The subroutine will be executed, but you will not
be taken into it step by step. Instead, you will see just the results. This can be handy
when you are confident with your subroutine logic, but you want to test a variety of
different cases.

One of the differences between the 6.30 and 6.40 versions of MPLAB is that the 6.40
version includes a “Step Out” button. This allows you to step partway through a
subroutine then skip over the rest of the subroutine and return to the calling program.
This isn’ t nearly as handy as the step over button, but it can be useful in some cases.

Now, try testing the routine with values that require a carry and a borrow. 258 and
255 will work here. When you step through the subroutines, notice that in this case
we take the path where we add in the carry (or subtract the borrow).

 Continued on next page

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Page 6 of 8 Revised: 20 Jan 2004 - 02:08 PM
John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Testing the Routines, Continued

Completed
Example

The following is the entire program we have built up so far:
; ===
; Lesson7a. asm - exampl e of doubl e byt e ar i t hmet i c
; 8- Jan- 2003
; ===
;
 pr ocessor pi c16f 84a
 i ncl ude <p16f 84a. i nc>
 __conf i g _XT_OSC & _PWRTE_ON & _WDT_OFF

; ===
; Fi l e r egi st er r eser vat i ons
 cbl ock H' 40'
 v1_l o ; Var i abl e 1, l ow byt e
 v1_hi ; Var i abl e 1, hi gh byt e
 v2_l o ; Var i abl e 2, l ow byt e
 v2_hi ; Var i abl e 2, hi gh byt e
 r es_l o ; Resul t , l ow byt e
 r es_hi ; Resul t , hi gh byt e
 endc

; -
 got o St ar t ; Ski p past subr out i nes

; ===
; Subr out i nes begi n her e
;
; -
; 16 bi t addi t i on
Add16
 movf v1_l o, W ; Low byt e f i r st oper and
 addwf v2_l o, W ; Add i n l ow byt e second oper and
 movwf r es_l o ; St or e r esul t
 movf v1_hi , W ; Pi ck up hi gh byt e f i r st oper and
 bt f sc STATUS, C; Was t her e a car r y?
 addl w H' 01' ; Yes, add i n car r y
 addwf v2_hi , W ; Add i n hi gh byt e second oper and
 movwf r es_hi ; St or e hi gh byt e r esul t
 r et ur n

; -
; 16 bi t subt r act i on
Sub16
 movf v2_l o, W ; Subt r act t he l ow or der subt r ahend
 subwf v1_l o, W ; f r om l ow or der mi nuend
 movwf r es_l o ; Save of f r esul t
 movf v1_hi , W ; Pi ck up hi gh byt e mi nuend
 bt f ss STATUS, C ; Subt r act t he bor r ow i f needed
 addl w H' FF' ; by addi ng - 1 t o W
 movwf r es_hi ; Tempor ar i l y save of f hi gh byt e
 movf v2_hi , W ; Subt r act hi gh byt e subt r ahend
 subwf r es_hi , F ; f r om saved mi nuend
 r et ur n

; ===
; Mai nl i ne st ar t s her e
St ar t
 ; Set up ar gument s wi t hout car r y/ bor r ow
 movl w H' 04' ; Fi r st val ue H' 0204'
 movwf v1_l o ; = 516 deci mal
 movl w H' 02'
 movwf v1_hi

 movl w H' 02' ; Second val ue H' 0102'
 movwf v2_l o ; = 258 deci mal
 movl w H' 01'
 movwf v2_hi

 ; Do an addi t i on
 cal l Add16 ; Resul t shoul d be 774
 ; or H' 0306'

 ; Do a subt r act i on
 cal l Sub16 ; Resul t shoul d be 258
 ; or H' 0102'

; -
 ; Set up ar gument s wi t h car r y/ bor r ow
 movl w H' 02' ; Fi r st val ue H' 0102'
 movwf v1_l o ; = 258 deci mal
 movl w H' 01'
 movwf v1_hi

 Continued on next page

Elmer 160 Lesson 7
Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Revised: 20 Jan 2004 - 02:08 PM Page 7 of 8
Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Testing the Routines, Continued

Completed
Example
(continued)

 movl w H' f f ' ; Second val ue H' 00f f '
 movwf v2_l o ; = 255 deci mal
 c l r f v2_hi
; Do an addi t i on
 cal l Add16 ; Resul t shoul d be 513
 ; or H' 0201'

 ; Do a subt r act i on
 cal l Sub16 ; Resul t shoul d be 3
 ; or H' 0003'
Loop
 got o Loop

 end

Still Larger Numbers

Introduction In the above examples, we used 16 bit numbers. This allows us to represent numbers
from 0 to 65535 or from -32768 to +32767, depending on whether we want to
interpret the number as signed or not. But, what if we want still larger numbers?

Extending the
model

As we mentioned earlier, we can extend the model as far as we wish. If we have a
number of n bits, it can take 2^n values. Thus, 3 bytes (24 bits) can take 2^24
values, or 16,777,216 possible values. 4 bytes can take 4,294,467,296 possible
values, which we can interpret as 0 to 4,294,467,295 (remember, zero counts as one
of our 4,294,467,296 values) or as -2,147,483,648 to +2,147,483,647. It is relatively
uncommon for us to need more than 4 bytes, but the same model can be extended
indefinitely.

Homework
Assignment 1

OK, we’ve been letting you off too easy. Time for some work. The first assignment
is relatively straightforward. Represent in PIC assembler the 20 meter QRP calling
frequency of 14,060,000 Hz. You may use three or four bytes, and you can represent
the individual bytes in binary, hex, decimal, or octal, your choice.

Homework
Assignment 2

This one is a little more interesting. Imagine, if you will, that we are building a
receiver that uses the common 4.9152 MHz crystals for the IF filter. Write a short
program that, given a receive frequency, calculates the local oscillator frequency so
that later we can feed that to our DDS daughtercard.

Hint: This is no different that what we just did, except you will need to extend the
routines to more bytes to get 1 Hz precision.

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Page 8 of 8 Revised: 20 Jan 2004 - 02:08 PM
John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Wrap Up

Summary In this lesson, we looked at how to represent numbers that are too large to fit in a
single byte. We also developed routines for adding and subtracting these larger
numbers.

Coming Up Up until now, all of our programs have been totally self-contained within the PIC.
We have had no way to interact with the user or with other circuitry. In the next
lesson, we will look at how the file register memory in the PIC is banked, and how
we interact with the outside world.

