Elmer 160 Lesson 7

Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Lesson 7
Multiple Precision Arithmetic

Overview

Introduction The PIC stores data as 8-bit bytes. Up until now, we have only used values of 8 bits
or less. But what if we have agreater range of values? In this section, we will
examine addition and subtraction of larger numbers.

In this section Following isalist of topicsin this section:

Description See Page
Representing Larger Numbers 2
Adding Larger Numbers 3
Subtracting Larger Numbers 4
Testing the Routines 5
Still Larger Numbers 7
Wrap Up 8
Revised: 20 Jan 2004 - 02:08 PM Page 1 of 8

Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Representing Larger Numbers

Introduction The PIC has an 8 bit data word. How can numbers larger than 255 be handled? The
answer isto use multiple bytes to store the value.

Interpretation Throughout this course, we will be faced with the redlity that symbolsin our
programs only have what meaning that we assign to them. Whilethisis true of
higher level computer languages as well, in assembler, there is dmost nothing that
carries meaning by itself; things only mean what we want them to mean.

In lesson 4, we assigned a value to a symbol, and used that to reference aplacein
memory. The value, (Spotl inthat case) “meant” to us alocation in the file register
memory. Inlesson 6, we assigned a value to the symbol XM TR and interpreted it as
abit number. These assignments can carry whatever interpretation we wish to apply.

The same istrue of the values stored in memory. We have aready talked about how
a byte could beinterpreted as a value from 0 to 255, or as avalue from -128 to +127,
depending on what we want. However, the byte might also represent aletter, several
small numbers packed together, or even just ajumble of individual bits.

Multiple digit This happensin normal arithmetic, too. In the decimal numbering system, adigit can

representation have one of ten possible values, from zero through nine. However, we can represent
anumber of arbitrary size by simply stringing digitstogether. Each digit to theleft is
interpreted as meaning ten times more than the digit to itsright. So the graphic ‘6’
could represent avalue of six, or sixty, or six hundred depending on how many digits
areto theright.

Similarly, we could string bytes together and interpret them as representing
successively higher values. Since a byte can have 256 different values, the individual
bytes can represent the one's place, the 256’ s place, the 65536’ s place, etc. Because
each individual ‘digit’ has 256 possible values, instead of the 10 in decimal numbers,
the values go up alot faster. Injust four bytes, we can represent over 4 billion
possible values.

Suppose, for example, we wanted to represent 1000 decimal. 1000 decimal is 768
plus 232, so we could represent 1000 as a 3 (768 / 256) with aremainder (digit) of
232.

Little endian or Y ou may have heard of theterm ‘endian’. It refersto whether the least significant

big endian byteis stored first or last. Inthe PC, the |east significant byte is stored in the lowest
numbered memory cell (little endian). On the Mac, the most significant byte is stored
in the lowest numbered memory cell (big endian). It turns out that each hasits
advantage, and on those machines, that structure is embedded in the hardware.

On the PIC, however, there are no instructions that access more than a single byte,
therefore the PIC has no “endian-ness’. Authors tend to put the low order byte first
in memory for binary values (and interestingly, the opposite for decimal values), but
there is nothing that makes one choice better than another. Indeed, thereisno
advantage (other than readability) to having the bytes adjacent!

Page 2 of 8 Revised: 20 Jan 2004 - 02:08 PM

John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Elmer 160 Lesson 7

Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Adding Larger Numbers

Introduction If we are going to use multiple bytes to represent larger numbers, we need to know
how to add them if they are to be at all meaningful.

Adding When we add two numbers of more than one digit in decimal, what do we do? Well,

Algorithm we start with the least significant digits. We add them, if the result will not fitina
single digit, we take the part that will not fit, divideit by ten, and we carry it into the
next higher digit. (We might not have thought of the divide part, but if we add eight
and six, we get fourteen. We keep the four, and we carry the ten, but before we use
it, we divide the ten by ten, giving us one.) A little detail you may not have noticed; if
we are adding only two numbers, we never have a carry of more than one.

Thesameistruein binary. If we add the least significant bytes, and the sum exceeds
what will fit in asingle byte, we take the part that will not fit, divide it by 256, and
we carry it to the next byte.

Just as we can in decimal, we can continue this process of adding and carrying for an
arbitrary number of bytes, so we can add numbers of any size we wish.

An Example Imagine we have three, two-byte memory locations set up by the following
Statements:

cbl ock H 40'*
vl lo ; Variable 1, |ow byte
vl hi ; Variable 1, high byte
v2 1o ; Variable 2, |ow byte
v2_hi ; Variable 2, high byte
res_lo ; Result, |ow byte
res_hi ; Result, high byte

endc

We could add them as simply as follows (In a subroutine, of course):

Add16
novf vl lo, W ; Low byte first operand
addwf v2_lo, W ; Add in | ow byte second operand
nmovwf res lo ; Store result
nmovf vl hi, W ; Pick up high byte first operand
btfsc STATUS, C ; WAs there a carry?
addl w H 0l ; Yes, add in carry
addwf v2_hi, W ; Add in high byte second operand
nmovwf res_hi ; Store high byte result
return

Notice that thisis not any different from what we would do if we were adding
decimal numbers by hand.

1 In previous examples, these blocks have always started at H’ 20". There is no magic to the location, though. File register addressesin
the 16F84A run from H’Oc’ to H'4f'. Aslong as we start after H'Ob’ and end before H'50" we can choose whatever we want. One
minor annoyance, though. The p16f84aincludefile defines_CP_ON asH’0f’. Since this definition is encountered before ours, if we
start our use of the memory at H’ Oc’, the file register display shows H'Of' as_CP_ON rather than whatever we have assigned. This
does not affect how the program runs at al, but it is an annoyance when we are debugging.

Revised: 20 Jan 2004 - 02:08 PM Page 3 of 8

Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Lesson 7 Elmer 160
Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Subtracting Larger Numbers

Introduction Subtraction, like addition, smply follows the rules we learned in grammar schooal,
except on binary, rather than decimal, values. We addressthe low order byte first,
remember whether we had a borrow, and then subtract the borrow from the next
higher-order byte.

Subtraction Thefollowing is an example subtraction using the same variables used above:
Routine ; 16 bit subtraction
Subl6
novf v2_lo, W ; Subtract the | ow order subtrahend
subwf vl lo, W ; fromlow order m nuend
nmovwf res_lo ; Save off result
novf vl_hi, W ; Pick up high byte ninuend
bt f ss STATUS, C ; Subtract the borrow if needed
addl w H FF' ; by adding -1 to W
novwf res_hi ; Tenporarily save off high byte
novf v2_hi, W ; Subtract high byte subtrahend
subwf res_hi, F ; from saved ninuend
return

Thistime we do the subtraction when the carry has been cleared because of the
borrow, rather than, as in addition, when set because of acarry.

Although these examples show only two bytes, the same logic can be carried on for
any arbitrary size number.

Page 4 of 8 Revised: 20 Jan 2004 - 02:08 PM

John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

Elmer 160 Lesson 7

Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Testing the Routines

Introduction In the previous pages, we have written two subroutines, one to do a 16-hit addition,
and another for a 16-bit subtraction. Now let’swrite amainline to test them out.

Writing a test If you have already entered the previous routines, and maybe assembled them, you

program have already built the project, added the assembler source file to the project, and put
in the processor, configuration, and include statements. Typically, we like to have
our subroutines at the front, so what you might not have thought of isthe got o
statement to skip over the subroutines to get to our mainline.

What we would like to do is to test both the addition and subtraction with and without
acarry and borrow so we can see that we have covered al the cases. If wemakev 1
be 516 and v2 be 258 we can cover the non-borrow/carry cases :

; Set up argunents without carry/borrow

mov| w H 04' : First value H 0204'
nmovwf vl lo ; = 516 decinal
mov| w H 02
nmovwf vl hi
mov| w H 02 ; Second val ue H 0102’
nmovwf v2_ lo ; = 258 decinal
mov| w H 01l
nmovwf v2_hi
; Do an addition
call Add16 ; Result should be 774
; or H 0306
; Do a subtraction
call Subl6 ; Result should be 258
; or H 0102

After you have stepped through each of the routines to satisfy yourself that you
understand what is going on, try the following; Step downtothecal | instruction,
then click on the step over button. The subroutine will be executed, but you will not
be taken into it step by step. Instead, you will seejust theresults. This can be handy
when you are confident with your subroutine logic, but you want to test a variety of
different cases.

One of the differences between the 6.30 and 6.40 versions of MPLAB is that the 6.40
version includes a“ Step Out” button. This allows you to step partway through a
subroutine then skip over the rest of the subroutine and return to the calling program.
Thisisn't nearly as handy as the step over button, but it can be useful in some cases.

Now, try testing the routine with values that require a carry and a borrow. 258 and
255 will work here. When you step through the subroutines, notice that in this case
we take the path where we add in the carry (or subtract the borrow).

Continued on next page

Revised: 20 Jan 2004 - 02:08 PM Page 5 of 8

Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Lesson 7 Elmer 160

Elmer 160 Lesson 7.doc Multiple Precision Arithmetic

Testing the Routines, Continued

Completed Thefollowing isthe entire program we have built up so far:
Example ;

Lesson7a. asm - exanpl e of double byte arithnetic
8- Jan- 2003

processor picl6f84a
incl ude <p16f84a.inc>
__config _XT _OSC & _PWRTE_ON & _\DT_OFF

; File register reservations

cbl ock H 40
vi_lo ; Variable 1, |ow byte
vi1_hi ; Variable 1, high byte
v2_lo ; Variable 2, low byte
v2_hi ; Variable 2, high byte
res_lo ; Result, low byte
res_hi ; Result, high byte

endc

got o Start Ski p past subroutines

16 bit addition

Add16
novf vl_lo,W ; Low byte first operand
addwf v2_lo,W ; Add in |low byte second operand
novwf res_lo ; Store result
novf vi_hi,W ; Pick up high byte first operand
bt fsc STATUS, C; Was there a carry?
addl w H 01' ; Yes, add in carry
addwf v2_hi,W ; Add in high byte second operand
nmovwf res_hi ; Store high byte result
return
16 bit subtraction
Sub16
movf v2_lo, W ; Subtract the | ow order subtrahend
subwf vi_lo, W ; fromlow order m nuend
novwf res_lo ; Save off result
novf vl_hi, W ; Pick up high byte m nuend
bt fss STATUS,C ; Subtract the borrow if needed
addl w H FF ; by adding -1 to W
nmovwf res_hi ; Tenporarily save off high byte
novf v2_hi , W ; Subtract high byte subtrahend
subwf res_hi,F ; from saved m nuend
return
; Mainline starts here
Start
; Set up argunents without carry/borrow
movl w H 04 ; First value H 0204
movw vli_lo ; = 516 deci mal
movl w H 02
novwf vi1_hi
nmovl w H 02 ; Second val ue H 0102
novwf v2_lo ; = 258 deci mal
nmovl w H 01'
novwf v2_hi
Do an addition
call Add16 ; Result should be 774
; or H 0306
Do a subtraction
cal | Sub16 ; Result should be 258
; or H 0102
Set up argunents with carry/borrow
movl w H 02' ; First value H 0102’
novwf vi_lo ; = 258 deci mal
nmovl w H 01'
nmovwf v1_hi
Continued on next page
Page 6 of 8 Revised: 20 Jan 2004 - 02:08 PM

John J. McDo , WB8BRCR Printed: 20 Jan 2004 - 02:08 PM

Elmer 160 Lesson 7

Multiple Precision Arithmetic Elmer 160 Lesson 7.doc

Testing the Routines, Continued

nmovl w Hff' ; Second val ue H 00ff'
Completed movw v2_lo ;= 255 deci mal
Examp|e clrf v2_hi
. ; Do an addition
(Cont|nued) cal | Add16 ; Result should be 513

; or H 0201

Do a subtraction
call Sub16 ; Result should be 3
; or H 0003
Loop
goto Loop

end

Still Larger Numbers

Introduction In the above examples, we used 16 bit numbers. This allows us to represent numbers
from 0 to 65535 or from -32768 to +32767, depending on whether we want to
interpret the number as signed or not. But, what if we want still larger numbers?

Extending the Aswe mentioned earlier, we can extend the model as far aswe wish. If we have a

model number of n bits, it can take 2 n values. Thus, 3 bytes (24 bits) can take 224
values, or 16,777,216 possible values. 4 bytes can take 4,294,467,296 possible
values, which we can interpret as O to 4,294,467,295 (remember, zero counts as one
of our 4,294,467,296 values) or as-2,147,483,648 to +2,147,483,647. Itisrelatively
uncommon for usto need more than 4 bytes, but the same model can be extended

indefinitely.
Homework OK, we've been letting you off too easy. Time for some work. The first assignment
Assignment 1 isrelatively straightforward. Represent in PIC assembler the 20 meter QRP calling

frequency of 14,060,000 Hz. Y ou may use three or four bytes, and you can represent
the individual bytesin binary, hex, decimal, or octal, your choice.

Homework Thisoneisalittle more interesting. Imagine, if you will, that we are building a

Assignment 2 receiver that uses the common 4.9152 MHz crystasfor the IF filter. Write a short
program that, given areceive frequency, calculates the loca oscillator frequency so
that later we can feed that to our DDS daughtercard.

Hint: Thisis no different that what we just did, except you will need to extend the
routines to more bytesto get 1 Hz precision.

Revised: 20 Jan 2004 - 02:08 PM Page 7 of 8

Printed: 20 Jan 2004 - 02:08 PM John J. McDonough, WB8RCR

Lesson 7 Elmer 160

Elmer 160 Lesson 7.doc Multiple Precision Arithmetic
Wrap Up
Summary In this lesson, we looked at how to represent numbersthat aretoo largeto fitina
single byte. We also developed routines for adding and subtracting these larger
numbers.
Coming Up Up until now, all of our programs have been totally self-contained within the PIC.

We have had no way to interact with the user or with other circuitry. Inthe next
lesson, we will look at how the file register memory in the PIC is banked, and how
we interact with the outside world.

Page 8 of 8 Revised: 20 Jan 2004 - 02:08 PM

John J. McDonough, WB8RCR Printed: 20 Jan 2004 - 02:08 PM

