
Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 1 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Lesson 20
Interrupts

Overview

Introduction In many of our earlier examples, the PIC has spent most of its time polling some
input or timer. Interrupts allow us to do useful work, and be notified when some
event occurs that we care about.

In this section Following is a list of topics in this section:

Description See Page

Overview 2

The Timer Interrupt 5

Saving the count to EEPROM 8

Multiple Interrupt Sources 11

Additional Experiments 16

Wrap Up 17

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 2 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Overview

Introduction In many applications we want the PIC to “walk and chew gum” at the same time. By
periodically polling inputs or polling timers, the PIC can appear to carry out multiple
tasks. However to be responsive to rapidly occurring events, the polling must be done
very frequently. But more frequent polling means fewer compute cycles available for
the "background" task. Using interrupts allows fast response to external events
without wasting compute time on polling.

In theory, an interrupt is fairly simple. When an event happens that needs immediate
attention, the interrupt taps the processor on the shoulder to go off and handle this
new task. Once that task is done, the processor can return to what it was doing.

Mechanics The mechanics of an interrupt are simple in concept. When some hardware event
causes an interrupt; the current program counter is pushed onto the stack. Then the
program counter is loaded with the address of the interrupt service routine. In the
PIC16 family, this address is H'04'.

In practice, more than just the program counter must be saved and restored. If the
interrupt service routine does much of anything, it will probably change the STATUS
and "W" registers. Thus we need to save the values in those registers before
proceeding with interrupt processing. The interrupt may also call on other assets
within the PIC which also must be properly saved and restored. This is the most
important, and sometimes the most difficult, part of interrupt processing

Interrupt
Sources

The PIC16F84A has only 4 interrupt sources:

Name Function Enable Bit Flag Bit

RB0/INT A transition of the RB0 pin INTE INTF

TMR0 An overflow of the TMR0 register T0IE T0IF

PORTB A change in PORTB bits 4-7 RBIE RBIF

EEPROM Completion of an EEPROM write EEIE EEIF

Other PICs have additional interrupts, appropriate to the peripherals contained on
those PICs. Note that bit names ending in IE are Interrupt Enable, those ending in IF
are Interrupt Flags.

Controlling the
interrupts

The INTCON register contains a bit, GIE (Global Interrupt Enable), which enables
all interrupts. As long as GIE is false, no interrupt from any source will occur.
INTCON also contains a bit to enable each of the individual interrupts as shown in
the table above. To receive an interrupt, both the GIE bit and one of the interrupt
enable bits must be set.

When the interrupt does occur, a flag is set to indicate the specific source. These flags
are also shown in the table.

 Continued on next page

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 3 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Overview, Continued

Saving Context When an interrupt occurs, a number housekeeping chores must be done. The PIC
hardware automatically saves the program counter. The hardware also clears the
global interrupt enable to prevent a second interrupt from occurring while the first is
being processed. When a return from interrupt instruction, (retfie) is executed, the
program counter is automatically restored and the GIE is turned back on.

However the programmer has certain responsibilities. The specific flag that caused
the interrupt must be cleared to prevent the same interrupt from being reprocessed.
The programmer must also determine which registers must be saved and restored so
that the main program can pick up where it left off. Remember that an interrupt can
occur at any place in the main program, so all possibilities must be covered.

The STATUS and W registers are most often saved and restored in an ISR. Since
doing almost anything changes the STATUS, this can be tricky. The solution is a bit
of boilerplate code that begins and ends most interrupt routines.

Isr:
 movwf w_temp ; Save off the W register
 swapf STATUS,W ; And the STATUS (use swapf
 movwf status_temp ; so as not to change STATUS)

[Interrupt handling code goes here]

 bcf (interrupt flag)
 swapf status_temp,W ; Restore the status
 movwf STATUS ; register
 swapf w_temp,F ; Restore W without disturbing
 swapf w_temp,W ; the STATUS register
 retfie

Since the movwf instruction doesn’t influence the status, the "W" can be saved
directly. Next the swapf allows moving the contents of the STATUS register into
W without affecting the status bits. The nybbles of STATUS are reversed in the saved
version, but get reversed again in the restore process.

The STATUS register is restored with a simple movwf . However restoring W this
way would affect the status bits. So the swapf trick is used again, this time twice.
The first time to get the nybbles backward so the second swapf ends up with the
correct result in W.

There may be other registers that must also be saved and restored depending on what
assets of the PIC the ISR uses. These might include the FSR and PCLATH. Also note
that we must clear the flag for the interrupt we just handled. If we don’t the interrupt
will re-assert itself as soon as we return from the ISR.

 Continued on next page

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 4 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Overview, Continued

Interrupt Priority On complex instruction set processors, there are usually a number of interrupt
priorities; that is, an interrupt can itself be interrupted by a higher priority interrupt.
On all the PIC16Fxx and smaller parts, all interrupts have the same hardware priority,
but the effective priority can be managed by the software.

When an interrupt occurs, the software must determine which device caused the
interrupt by examining the interrupt flags. The order in which this is done essentially
determines the priority of an interrupt.

In many applications, especially on the PIC16F84, there will only be one interrupt
enabled; in this case, the checking of other interrupt flags is normally skipped.

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 5 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

The Timer Interrupt

Introduction For our first experiment, we will examine the TMR0 interrupt. We have seen in
earlier lessons how we can use the TMR0 register to keep track of elapsed time while
we are off doing something else. The TMR0 interrupt, when enabled, causes an
interrupt whenever the TMR0 register overflows.

Overall view of
our Program

Our program will consist of a tight loop that checks a “dirty” flag to see whether a
value in memory has been updated. If the flag is set, we will display the value,
otherwise we will go back and check the flag again:

We will rely on the LCD routines from Lesson 17 as well as the decimal conversion
routine from Lesson 18.

Displaying a 16-
bit Value

Because all of the experiments in this lesson will require displaying a 16 bit value on
the LCD, it makes sense to make a subroutine to do that which we can simply call in
each of our programs.

The ConvBCD2 routine takes a two byte value and returns a 5 byte result. To display
this, we will need to loop through each of the 5 characters, sending them to the LCD.
Since the same number of characters are sent each time, the LCD need not be erased.
Instead we can simply set the LCD cursor position, which is slightly faster. Faster is
good because we would like to be able to update the values quickly, and the flashing
caused by erasing the display is a little annoying.

 Continued on next page

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 6 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

The Timer Interrupt, Continued

Displaying a 16-
bit Value
(continued)

The code for the display routine will then look something like this:
Disp16:
 call ConvBCD2 ; Convert the value to BCD
 call LCDzero ; Cursor to left of LCD
 movlw digits ; Pick up address of output
 movwf FSR ; into FSR
 movlw H'05' ; Count of number of
 movwf count ; digits to display
Disp16L
 movf INDF,W ; Get current digit
 call LCDletr ; Display it
 incf FSR,F ; Point to next digit
 decfsz count,F ; Count down one we just did
 goto Disp16L ; Done? No, do it again
 movf LEDflg,W ; Set the LEDs to the
 movwf PORTB ; desired condition
 clrf dirty ; Value is now current

 return

Because the LCD and the LEDs share pins on the PIC-EL, the LEDs flash when the
LCD is updated. To reduce that flashing, we will turn off the LEDs every time we
write the LCD. This write to PORTB doesn’t affect the LCD since we are careful not
to raise the LCD enable pin. Instead of simply storing a literal, variable LEDflg is
used so that later we can use the LEDs as an output.

Also note that we have taken care to clear the “dirty” flag after the write. Our ISR
will set the dirty flag whenever the value is changed. In this way, the LCD is
rewritten whenever the data changes, and only when the data changes.

The main
program loop

The main program loop is pretty straightforward. The value is displayed on the LCD,
then spin on the dirty flag until it becomes true, at which time we will display the
value again:

Loop
 call Disp16 ; Display the value in memory
Loop1
 movf dirty,W ; Test whether a new value
 btfsc STATUS,Z
 goto Loop1 ; No, check again
 goto Loop ; Yes, go do display

Initialization The LCD is initialized, along with the values for the dirty flag, the binary value to
count, and the LEDflg . Since the timer initialization will be reused, it is put in a
separate routine. That initialization is essentially the same as in Lesson 13.

After initialization, it is now safe to turn on interrupts. Both the timer interrupt and
the global interrupt enable must be turned on:
 bsf INTCON,T0IE ; Allow timer interrupt
 bsf INTCON,GIE ; Enable interrupts

 Continued on next page

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 7 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

The Timer Interrupt, Continued

The Interrupt
Service Routine

The interrupt service routine is responsible for incrementing the counter. The routine
gets called whenever the timer overflows and causes an interrupt. The routine must
increment the counter and set the dirty flag.

However, there are also some “housekeeping” tasks. Since we have no idea of the
processor’s state at the time the interrupt occurred, the STATUS and W registers
must be saved before the ISR changes them. Of course, these must be restored on
exit.

Since the state of the bank bits when the interrupt occurred is unknown, we need to
select the bank before accessing any file registers, even if they are in bank 0. On the
F84 this is only necessary for special function registers; the general purpose registers
are accessible in all the banks. So far, all the registers we use in the ISR are also in
all banks. However, later this could become an issue, and is one of the potential traps
of interrupt handling. Finally, the timer interrupt flag must be cleared before exiting;
otherwise the timer interrupt will re-assert itself the instant we try to exit the ISR.

Saving the status is done in a somewhat “rote” fashion:
IRQSVC code
 movwf w_temp ; Save off the W register
 swapf STATUS,W ; And the STATUS
 movwf status_temp ;

The actual work we need to do in the ISR is pretty basic:
 ; Bump up the two-byte value we will display
 incf binary+1,F ; Increment low byte
 btfsc STATUS,Z ; Overflow? (incf doesn't affect C)
 incf binary,F ; Increment high byte
 incf dirty,F ; Note that value changed

The restore is again pretty much copied from the datasheet, except we must
remember to clear the interrupt flag

 bcf INTCON,T0IF ; Clear the old interrupt

 swapf status_temp,W ; Restore the status
 movwf STATUS ; register
 swapf w_temp,F ; Restore W without disturbing
 swapf w_temp,W ; the STATUS register
 retfie

Testing the
code

Once we build and assemble the project, and run the code in our PIC-EL, we should
see a five digit number incrementing quite quickly. Wait until the count exceeds 255
to be sure we have handled incrementing the second byte of binary correctly.

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 8 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Saving the count to EEPROM

Introduction In an earlier lesson, we examined reading the EEPROM. However, we avoided the
problem of writing the EEPROM. It turns out that the EEPROM write is one of those
interrupt sources we want to examine, so now we will look at writing the EEPROM.

The EEPROM is often used to store calibration constants, some of which may be
quite important or difficult to recover. Because of this, it is important that a program
not accidentally alter the contents of EEPROM. To make it difficult to inadvertently
write to EEPROM, Microchip has the programmer “jump through hoops” to actually
perform the write.

Writing to EEPROM isn’t difficult, but there are several steps whose only purpose is
to prevent an accidental write.

The EEPROM
writing
sequence

To write to the EEPROM, the following sequence of steps must be executed:

• Check that a write is not in progress (EECON1 bit WR is clear)

• Write the desired EEPROM address to EEADR

• Write the data value to be stored to EEDATA

• Set the WREN bit of EECON1 to enable writing

• Disable interrupts if not already disabled

• Write a H’55’ to EECON2

• Write a H’AA’ to EECON2

• Set the WR bit of EECON1

• Enable interrupts (if being used)

• Clear the WREN bit of EECON1

Note that the steps between turning off interrupts and turning them back on must
happen in the exact sequence with no interruption.

The write can take some time, a few milliseconds depending on the supply voltage
and data to be written. When the write is complete, the WR bit will be cleared, and
EEIF will be set. If interrupts are enabled and EEIE is set, an interrupt will occur.

 Continued on next page

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 9 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Saving the count to EEPROM, Continued

The EEPROM
writing code

The above sequence, in the case where we are not using the EEPROM write
completion interrupt, would look like the following:
 banksel EECON1 ; Bank 1
Wait1 btfsc EECON1,WR ; Be sure no write in progre ss
 goto Wait1 ;
 banksel EEADR ; Bank 0
 movlw SAVADR ; Set address in EEPROM
 movwf EEADR ; to be written
 banksel binary ;
 movf binary,W ; Set data to be written
 banksel EEDATA ;
 movwf EEDATA ;

 banksel EECON1 ; Bank 1
 bcf INTCON,GIE ; Turn off interrupts
 bsf EECON1,WREN ; Enable write
 movlw H'55' ; This sequence is
 movwf EECON2 ; required before the
 movlw H'AA' ; EEPROM may be written
 movwf EECON2 ;
 bsf EECON1,WR ; Start write
 bsf INTCON,GIE ; Turn interrupts back on
Wait2 btfsc EECON1,WR ; Wait for write complete
 goto Wait2
 bcf EECON1,WREN ; Disable write

We have predefined a constant, SAVADR, that identifies the address in EEPROM where we
want to store the value. In the example code, this is in an include file.

In our example, the above code needs to be duplicated for the second byte, since we have two
bytes of count to store.

In this example, we really didn’t require the banksel binary, although on other PICs, this
is a real trap, so it isn’t a bad practice to ensure bank 0 before accessing our variable. Having
selected bank 0, the banksel EEDATA is also redundant, although it would have been
required had we eliminated the banksel binary.

Reading the
EEPROM

Reading the EEPROM is fairly simple; we did it back in Lesson 14. We simply store
the address to read in EEADR, set the RD bit in EECON1, and read the result from
EEDATA.

 movlw SAVADR ; Store the EEPROM address
 banksel EEADR
 movwf EEADR ; to the address register
 banksel EECON1
 bsf EECON1,RD ; again command a read
 banksel EEDATA
 movf EEDATA,W ; grab the high byte
 movwf binary+1 ; and store in high

 Continued on next page

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 10 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Saving the count to EEPROM, Continued

Example B logic In the second example, the ability to store and restore the count in EEPROM will be
added. In this example the EEPROM interrupt is not yet used. It will be used in
example C. Here is the logic:

Note that the dirty flag gets set by the “Read Count” block and the “Update Value”
block, and cleared by the “Display Value” block.

In the example code the buttons are not debounced. In a real application this should
be done to prevent excessive rewriting of the EEPROM.

Building the
example code

The project is getting more complex. To build the example code, you must include in
your project:

• Source files:

o ConvBCD2
o Disp16
o InitTMR0
o ISRa
o L20b
o RestCnt
o SaveCntB

• Library files:

o LCDlib_84A

• Linker Scripts

o Lesson20

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 11 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Multiple Interrupt Sources

Introduction In the previous example, we stored our count in the EEPROM, but we had to spin in a
tight loop waiting for the EEPROM write to complete. It would make sense to
handle an EEPROM completion interrupt so that our application could be off doing
something useful rather than waiting for a flag to change. (Admittedly, the example
application is somewhat limited in the “useful” things it has to do).

Managing State Unfortunately, it isn’t quite so simple. In this case, two bytes must be written to
EEPROM. The program must write the first byte, wait for an interrupt, write the
second byte, and then wait for another interrupt. All this while still processing timer
interrupts. Sounds complicated.

Actually, it isn’t too bad. A state variable called eestate will keep track of what
needs to be done next. The variable will be set to zero initially, then to 1 when we
need to write the first byte, 2 awaiting completion of the first byte, 3 when the second
byte can be written, 4 awaiting completion of that write, and 5 when the operation is
done.

All the EEPROM operations, other than those handled by the interrupt service
routine, will be consolidated in a subroutine called SaveCnt.

The Button One detail to handle that wasn’t dealt with before. Since the write will be underway
while the main program is looping, care must be taken not to initiate a write while
one is already in progress. Since eestate already keeps track of that detail, this is
easily handled:
 movlw H'10' ; Now check whether PB1 pressed
 andwf PORTA,W ;
 btfss STATUS,Z ;
 goto CheckDirty ; No, see if display dirty
 movf eestate,W ; eestate must be zero to
 btfss STATUS,Z ; initiate a write
 goto CheckDirty ; not = 0, don't write
 movlw h'01' ; Schedule a write because
 movwf eestate ; we have a value to save

Calling SaveCnt One “trick” that wasn’t mentioned in our definition of eestate. We have chosen to
define it in such a way that our EEPROM handling routine gets called whenever the
value of eestate is odd:

 btfsc eestate,0 ; We call SaveCnt when bit 0
 call SaveCnt ; is set (eestate = 1, 3, 5)

 Continued on next page

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 12 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Multiple Interrupt Sources, Continued

SaveCnt The SaveCnt routine is called whenever eestate is odd. The routine will need to
check this value and:

1 – Turn on LED and write first byte
3 – Write second byte
5 – Turn off LED and set eestate to 0

We can do this simply with a table:
 movlw HIGH(SaveCnt) ; Setup PCLATH for
 movwf PCLATH ; table call
 rrf eestate,W ; Need to check only bits
 andlw H'03' ; 1 and 2
 addwf PCL,F ; Jump
 goto FirstByte ; 1 (0)=First byte
 goto NextByte ; 3 (1)=Second byte
 goto Clearit ; 5 (2)=Done

Note that we know the value is odd since that is the only way we can get here, so we
divide eestate by two and mask it (for safety) before adding it to the PCL.

The FirstByte and NextByte routines will be the same except for the locations used in
the file register and EEPROM. For only two bytes, it isn’t worthwhile to try to index
these through the FSR, so we will simply duplicate the first part of the code, and then
jump to common code:
FirstByte
 movlw H'06' ; Top LED on
 movwf PORTB ; to indicate write in
 movwf LEDflg ; progress

 banksel EECON1 ; Check to be sure a write
 btfsc EECON1,WR ; is not already in progress
 return ; Yes, we'll be back
 movlw SAVADR ; Set address in EEPROM
 banksel EEADR
 movwf EEADR ; to be written
 banksel binary
 movf binary,W ; Set data to be written
 banksel EEDATA
 movwf EEDATA ;
 goto ContWrite

Note that the top LED is turned on by setting a value in LEDflg, this is something
not done for the second byte. For the second byte, SAVADR+1 and binary+1 are
used, but otherwise the code is the same. Note that EECON1 is in bank 1, so a
banksel is necessary before writing to it. Afterwards, switch back to bank 0. Again,
some redundant bank switches are included in the code for clarity.

For both bytes we then jump to:

 Continued on next page

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 13 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Multiple Interrupt Sources, Continued

SaveCnt
(continued)

ContWrite
 banksel EECON1 ;
 bcf INTCON,GIE ; Turn off interrupts
 bsf EECON1,WREN ; Enable write
 movlw H'55' ; This sequence is
 movwf EECON2 ; required before the
 movlw H'AA' ; EEPROM may be written
 movwf EECON2 ;
 bsf EECON1,WR ; Start write
 bsf INTCON,EEIE ; Enable EEPROM Interrupt
 bsf INTCON,GIE ; Re-enable interrupts

Note that interrupts are disabled while writing the H’55’ and H’AA’ to EECON2. This
sequence must be performed exactly in order for the write to occur. An interrupt
during this sequence would cause the write to fail. After writing the 55 and AA as
we did in the non-interrupt version, the EEPROM write completion interrupt is
enabled:
 banksel eestate
 incf eestate,F ; Ready for next step

When the write is complete, we want to disable the EEPROM interrupt, reset
eestate to zero, and turn off the LED:

Clearit
 bcf INTCON,EEIE ; Disable EEPROM Interrupt
 clrf eestate ; Return to state 0
 movlw H'0e' ; All LEDs off
 movwf PORTB
 movwf LEDflg

In the above cases, the various errorlevel directives have been omitted for clarity.
When they are left out, a number of assembler warnings will be generated. These
warnings occur whenever a non-bank 0 location is accessed, whether or not the bank
bits have been set correctly.

The Interrupt
Service Routine

The interrupt service routine (ISR) must still handle the timer, but it must also deal
with the EEPROM interrupt. The interrupt flags must be tested to determine which
interrupt caused the ISR to be called:
 btfss INTCON,T0IF ; Timer interrupt flag
 goto IRQEEPROM ; No, go check EEPROM

When the EEPROM interrupt is recognized, all that is required is to increment
eestate (and, of course, clear the interrupt flag):

 bcf IFREG,EEIF ; Clear the interrupt flag
 incf eestate,F ; Remember we handled it

 Continued on next page

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 14 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Multiple Interrupt Sources, Continued

Overall EEPROM
Flow

Handling multiple bytes can get a little confusing. The following figure shows the
overall flow of the program logic:

As in the previous example, we set the dirty flag whenever we update the count, and
clear the dirty flag whenever we have displayed the count.

Note that the ISR has been kept as simple as possible. Whenever dealing with
interrupts, the time that the interrupts are disabled should be kept as short as possible.
Since interrupts are disabled while processing an interrupt, this means that the ISR
should be as short as possible. Interrupts are also disabled while setting up the
EEPROM writes. This was necessary since part of that sequence is critical.
However, rather than disabling interrupts for the entire time, we only disabled them
for the minimum time necessary. This delay in updating the count is unlikely to be
noticed in our application. Note, however, that the TMR0 register continues
counting, so while the display update might be put off for a short time, there is no
cumulative error in the count.

 Continued on next page

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 15 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Multiple Interrupt Sources, Continued

Testing the
Code

The modules that must be included in the project are very similar to the previous
exercise, except for the main, the use of the more elaborate ISR, and the more
elaborate EEPROM routine:

• Source files:

o ConvBCD2
o Disp16
o InitTMR0
o ISRc
o L20c
o RestCnt
o SaveCntC

• Library files:

o LCDlib_84A

• Linker Scripts

o Lesson20

As before, one should be careful to test all the conditions that might be encountered.
Watch to see that the values increment into the second byte, store and restore the
count, observe the LED behavior when storing and restoring, and be sure to test
restoring a value less than 255 when the count is greater, and a value greater than 255
when the count is less. (Since the value is saved in EEPROM, the stored value should
be preserved across reset and power down).

Elmer 160 Lesson 20
E160L20.doc Interrupts

Page 16 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Additional Experiments

Introduction The PIC-EL does not have inputs on the pins that may be used for other interrupts, so
we were unable to run experiments demonstrating the RB0/INT and PORTB change
interrupts. However, in Lesson 19, we built a board with a PIC16F87x which has
some of those pins free.

RB0/INT The RB0/INT interrupt allows the PIC to be interrupted when a transition is detected
on the RB0 pin (pin 21 on the 872/3/6). This pin is free on the test circuit. The
student wishing to test this interrupt might add some circuitry to this pin, perhaps a
low speed oscillator such as a 555 to experiment with this interrupt.

Note that the pin is triggered either on a rising or falling edge, selectable by the
program.

PORTB Change The PORTB Change interrupt, when enabled, causes an interrupt whenever the input
to bits 4 through 7 of PORTB are changed. The experimental board leaves bits 4 and
5 open, and bits 6 and 7 are only used for programming, so they may be used for the
experiment provided they are lightly loaded during programming. Using a normally
open pushbutton with a high-value pullup would be one way to do this.

Other Interrupts In addition to the interrupts shared with the PIC16F84A, the PIC16F87x family has a
number of other interrupts. There are two additional timers, each of which has an
interrupt, there are two capture/compare ports which also have interrupts. These
parts contain a serial port which can also notify the program of completion via an
interrupt.

One of the more interesting interrupts is the A/D completion interrupt. Since we
experimented with the A/D in Lesson 19, the interested student might modify the
Lesson 19 code to utilize this interrupt.

Lesson 20 Elmer 160
Interrupts E160L20.doc

Revised: 06/14/07 09:08 AM Page 17 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Wrap Up

Summary In this lesson we have examined interrupts on the PIC16F84A, and learned how to
write to the EEPROM. Both the timer interrupt and the EEPROM write completion
interrupt have been used in the examples. The PIC-EL hardware doesn’t give us an
opportunity to test the 84A’s other two interrupt sources, the INT interrupt (transition
of RB0) and the PORT B interrupt (change in bits 4-7).

Although there are a few things that must be considered, interrupt processing is not
terribly difficult, and in some cases, can simplify our code. Interrupts allow writing
code that is more responsive to external events, and avoid spending precious compute
cycles polling for an event.

Coming Up In the next lesson, these same 3 exercises will be ported to other processors.
Virtually any 18 pin PIC can be used in the PIC-EL, but two of them, the PIC16F54
and the PIC16F716 do not have the on-chip resources to perform the exercises. Both
lack EEPROM, and the 54 does not have enough memory.

The student wishing to perform the exercises in the next lesson might want to pick up
a PIC16F628. The lesson will also examine the 648A, 819 and 88, however those
parts are not supported by FPP, so other programming software must be selected.
Your author uses DL4YHF’s WinPIC for those parts, but there are a large number of
choices which can be configured to work with the PIC-EL. The interested student
who has installed WinPIC might browse the catalogs of some parts suppliers and pick
up other 18 pin PICs that look as if they might be candidates for future projects and
can be had at attractive prices.

