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Lesson 20 
Interrupts 

Overview 

Introduction In many of our earlier examples, the PIC has spent most of its time polling some 
input or timer.  Interrupts allow us to do useful work, and be notified when some 
event occurs that we care about. 

In this section Following is a list of topics in this section: 

Description See Page 

Overview 2 

The Timer Interrupt 5 

Saving the count to EEPROM 8 

Multiple Interrupt Sources 11 

Additional Experiments 16 

Wrap Up 17 
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Overview 

Introduction In many applications we want the PIC to “walk and chew gum” at the same time.  By 
periodically polling inputs or polling timers, the PIC can appear to carry out multiple 
tasks. However to be responsive to rapidly occurring events, the polling must be done 
very frequently.  But more frequent polling means fewer compute cycles available for 
the "background" task. Using interrupts allows fast response to external events 
without wasting compute time on polling. 

In theory, an interrupt is fairly simple. When an event happens that needs immediate 
attention, the interrupt taps the processor on the shoulder to go off and handle this 
new task. Once that task is done, the processor can return to what it was doing. 

Mechanics The mechanics of an interrupt are simple in concept. When some hardware event 
causes an interrupt; the current program counter is pushed onto the stack. Then the 
program counter is loaded with the address of the interrupt service routine. In the 
PIC16 family, this address is H'04'. 

In practice, more than just the program counter must be saved and restored. If the 
interrupt service routine does much of anything, it will probably change the STATUS 
and "W" registers. Thus we need to save the values in those registers before 
proceeding with interrupt processing. The interrupt may also call on other assets 
within the PIC which also must be properly saved and restored. This is the most 
important, and sometimes the most difficult, part of interrupt processing 

Interrupt 
Sources 

The PIC16F84A has only 4 interrupt sources: 

Name Function Enable Bit Flag Bit 

RB0/INT A transition of the RB0 pin INTE INTF 

TMR0 An overflow of the TMR0 register T0IE T0IF 

PORTB A change in PORTB bits 4-7 RBIE RBIF 

EEPROM Completion of an EEPROM write EEIE EEIF 

Other PICs have additional interrupts, appropriate to the peripherals contained on 
those PICs.  Note that bit names ending in IE are Interrupt Enable, those ending in IF 
are Interrupt Flags. 

Controlling the 
interrupts 

The INTCON register contains a bit, GIE (Global Interrupt Enable), which enables 
all interrupts. As long as GIE is false, no interrupt from any source will occur. 
INTCON also contains a bit to enable each of the individual interrupts as shown in 
the table above. To receive an interrupt, both the GIE bit and one of the interrupt 
enable bits must be set. 

When the interrupt does occur, a flag is set to indicate the specific source. These flags 
are also shown in the table. 

 Continued on next page 
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Overview, Continued 

Saving Context When an interrupt occurs, a number housekeeping chores must be done. The PIC 
hardware automatically saves the program counter. The hardware also clears the 
global interrupt enable to prevent a second interrupt from occurring while the first is 
being processed. When a return from interrupt instruction, (retfie ) is executed, the 
program counter is automatically restored and the GIE is turned back on. 
 
However the programmer has certain responsibilities. The specific flag that caused 
the interrupt must be cleared to prevent the same interrupt from being reprocessed. 
The programmer must also determine which registers must be saved and restored so 
that the main program can pick up where it left off. Remember that an interrupt can 
occur at any place in the main program, so all possibilities must be covered. 
 
The STATUS and W registers are most often saved and restored in an ISR. Since 
doing almost anything changes the STATUS, this can be tricky. The solution is a bit 
of boilerplate code that begins and ends most interrupt routines. 
 
Isr: 
    movwf w_temp  ; Save off the W register 
    swapf STATUS,W  ; And the STATUS (use swapf 
    movwf status_temp  ; so as not to change STATUS ) 

[Interrupt handling code goes here] 

    bcf    (interrupt flag) 
    swapf status_temp,W ; Restore the status 
    movwf STATUS  ; register 
    swapf w_temp,F  ; Restore W without disturbing 
    swapf w_temp,W  ; the STATUS register 
    retfie 

Since the movwf instruction doesn’t influence the status, the "W" can be saved 
directly.  Next the swapf allows moving the contents of the STATUS register into 
W without affecting the status bits. The nybbles of STATUS are reversed in the saved 
version, but get reversed again in the restore process. 

The STATUS register is restored with a simple movwf . However restoring W this 
way would affect the status bits.  So the swapf trick is used again, this time twice. 
The first time to get the nybbles backward so the second swapf ends up with the 
correct result in W. 

There may be other registers that must also be saved and restored depending on what 
assets of the PIC the ISR uses. These might include the FSR and PCLATH. Also note 
that we must clear the flag for the interrupt we just handled.  If we don’t the interrupt 
will re-assert itself as soon as we return from the ISR. 

 Continued on next page 
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Overview, Continued 

Interrupt Priority On complex instruction set processors, there are usually a number of interrupt 
priorities; that is, an interrupt can itself be interrupted by a higher priority interrupt.  
On all the PIC16Fxx and smaller parts, all interrupts have the same hardware priority, 
but the effective priority can be managed by the software. 

When an interrupt occurs, the software must determine which device caused the 
interrupt by examining the interrupt flags.  The order in which this is done essentially 
determines the priority of an interrupt. 

In many applications, especially on the PIC16F84, there will only be one interrupt 
enabled; in this case, the checking of other interrupt flags is normally skipped. 
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The Timer Interrupt 

Introduction For our first experiment, we will examine the TMR0 interrupt.  We have seen in 
earlier lessons how we can use the TMR0 register to keep track of elapsed time while 
we are off doing something else.  The TMR0 interrupt, when enabled, causes an 
interrupt whenever the TMR0 register overflows. 

Overall view of 
our Program 

Our program will consist of a tight loop that checks a “dirty” flag to see whether a 
value in memory has been updated.  If the flag is set, we will display the value, 
otherwise we will go back and check the flag again: 

 
We will rely on the LCD routines from Lesson 17 as well as the decimal conversion 
routine from Lesson 18. 

Displaying a 16-
bit Value 

Because all of the experiments in this lesson will require displaying a 16 bit value on 
the LCD, it makes sense to make a subroutine to do that which we can simply call in 
each of our programs. 

The ConvBCD2 routine takes a two byte value and returns a 5 byte result.  To display 
this, we will need to loop through each of the 5 characters, sending them to the LCD.  
Since the same number of characters are sent each time, the LCD need not be erased. 
Instead we can simply set the LCD cursor position, which is slightly faster.  Faster is 
good because we would like to be able to update the values quickly, and the flashing 
caused by erasing the display is a little annoying. 

 Continued on next page 
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The Timer Interrupt, Continued 

Displaying a 16-
bit Value  
(continued) 

The code for the display routine will then look something like this: 
Disp16: 
  call ConvBCD2 ; Convert the value to BCD 
  call LCDzero ; Cursor to left of LCD 
  movlw digits  ; Pick up address of output 
  movwf FSR  ; into FSR 
  movlw H'05'  ; Count of number of 
  movwf count  ; digits to display 
Disp16L 
  movf INDF,W  ; Get current digit 
  call LCDletr ; Display it 
  incf FSR,F  ; Point to next digit 
  decfsz count,F ; Count down one we just did 
  goto Disp16L ; Done? No, do it again 
  movf LEDflg,W ; Set the LEDs to the 
  movwf PORTB  ; desired condition 
  clrf dirty  ; Value is now current 
 
  return 

Because the LCD and the LEDs share pins on the PIC-EL, the LEDs flash when the 
LCD is updated.  To reduce that flashing, we will turn off the LEDs every time we 
write the LCD.  This write to PORTB doesn’t affect the LCD since we are careful not 
to raise the LCD enable pin.  Instead of simply storing a literal, variable LEDflg  is 
used so that later we can use the LEDs as an output. 

Also note that we have taken care to clear the “dirty” flag after the write.  Our ISR 
will set the dirty flag whenever the value is changed.  In this way, the LCD is 
rewritten whenever the data changes, and only when the data changes. 

The main 
program loop 

The main program loop is pretty straightforward.  The value is displayed on the LCD, 
then spin on the dirty flag until it becomes true, at which time we will display the 
value again: 

Loop 
  call Disp16  ; Display the value in memory 
Loop1 
  movf dirty,W ; Test whether a new value 
  btfsc STATUS,Z 
  goto Loop1  ; No, check again 
  goto Loop  ; Yes, go do display 

Initialization The LCD is initialized, along with the values for the dirty flag, the binary value to 
count, and the LEDflg .  Since the timer initialization will be reused, it is put in a 
separate routine. That initialization is essentially the same as in Lesson 13. 

After initialization, it is now safe to turn on interrupts.  Both the timer interrupt and 
the global interrupt enable must be turned on: 
  bsf INTCON,T0IE ; Allow timer interrupt 
  bsf INTCON,GIE ; Enable interrupts  

 Continued on next page 
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The Timer Interrupt, Continued 

The Interrupt 
Service Routine 

The interrupt service routine is responsible for incrementing the counter. The routine 
gets called whenever the timer overflows and causes an interrupt. The routine must 
increment the counter and set the dirty flag. 

However, there are also some “housekeeping” tasks. Since we have no idea of the 
processor’s state at the time the interrupt occurred, the STATUS and W registers 
must be saved before the ISR changes them. Of course, these must be restored on 
exit. 

Since the state of the bank bits when the interrupt occurred is unknown, we need to 
select the bank before accessing any file registers, even if they are in bank 0. On the 
F84 this is only necessary for special function registers; the general purpose registers 
are accessible in all the banks.  So far, all the registers we use in the ISR are also in 
all banks.  However, later this could become an issue, and is one of the potential traps 
of interrupt handling.  Finally, the timer interrupt flag must be cleared before exiting; 
otherwise the timer interrupt will re-assert itself the instant we try to exit the ISR. 

Saving the status is done in a somewhat “rote” fashion: 
IRQSVC code 
 movwf w_temp  ; Save off the W register 
 swapf STATUS,W ; And the STATUS 
 movwf status_temp ; 

The actual work we need to do in the ISR is pretty basic: 
  ; Bump up the two-byte value we will display 
  incf binary+1,F ; Increment low byte 
  btfsc STATUS,Z ; Overflow? (incf doesn't affect C) 
  incf binary,F ; Increment high byte 
  incf dirty,F ; Note that value changed 

The restore is again pretty much copied from the datasheet, except we must 
remember to clear the interrupt flag 

  bcf INTCON,T0IF ; Clear the old interrupt 
 
  swapf status_temp,W ; Restore the status 
  movwf STATUS ; register 
  swapf w_temp,F ; Restore W without disturbing 
  swapf w_temp,W ; the STATUS register 
  retfie 

 

Testing the 
code 

Once we build and assemble the project, and run the code in our PIC-EL, we should 
see a five digit number incrementing quite quickly.  Wait until the count exceeds 255 
to be sure we have handled incrementing the second byte of binary  correctly. 
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Saving the count to EEPROM 

Introduction In an earlier lesson, we examined reading the EEPROM.  However, we avoided the 
problem of writing the EEPROM.  It turns out that the EEPROM write is one of those 
interrupt sources we want to examine, so now we will look at writing the EEPROM. 

The EEPROM is often used to store calibration constants, some of which may be 
quite important or difficult to recover.  Because of this, it is important that a program 
not accidentally alter the contents of EEPROM.  To make it difficult to inadvertently 
write to EEPROM, Microchip has the programmer “jump through hoops” to actually 
perform the write. 

Writing to EEPROM isn’t difficult, but there are several steps whose only purpose is 
to prevent an accidental write. 

The EEPROM 
writing 
sequence 

To write to the EEPROM, the following sequence of steps must be executed: 

• Check that a write is not in progress (EECON1 bit WR is clear) 

• Write the desired EEPROM address to EEADR 

• Write the data value to be stored to EEDATA 

• Set the WREN bit of EECON1 to enable writing 

• Disable interrupts if not already disabled 

• Write a H’55’ to EECON2 

• Write a H’AA’ to EECON2 

• Set the WR bit of EECON1 

• Enable interrupts (if being used) 

• Clear the WREN bit of EECON1 

Note that the steps between turning off interrupts and turning them back on must 
happen in the exact sequence with no interruption. 

The write can take some time, a few milliseconds depending on the supply voltage 
and data to be written.  When the write is complete, the WR bit will be cleared, and 
EEIF will be set.  If interrupts are enabled and EEIE is set, an interrupt will occur. 

 Continued on next page 
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Saving the count to EEPROM, Continued 

The EEPROM 
writing code 

The above sequence, in the case where we are not using the EEPROM write 
completion interrupt, would look like the following: 
 banksel  EECON1  ; Bank 1 
Wait1 btfsc  EECON1,WR ; Be sure no write in progre ss 
 goto  Wait1  ;  
 banksel  EEADR  ; Bank 0 
 movlw  SAVADR  ; Set address in EEPROM 
 movwf  EEADR  ; to be written 
 banksel  binary  ; 
 movf  binary,W ; Set data to be written 
 banksel  EEDATA  ; 
 movwf  EEDATA  ; 
 
 banksel  EECON1  ; Bank 1 
 bcf  INTCON,GIE ; Turn off interrupts 
 bsf  EECON1,WREN ; Enable write 
 movlw  H'55'  ; This sequence is 
 movwf  EECON2  ; required before the 
 movlw  H'AA'  ; EEPROM may be written 
 movwf  EECON2  ; 
 bsf  EECON1,WR ; Start write 
 bsf  INTCON,GIE ; Turn interrupts back on 
Wait2 btfsc  EECON1,WR ; Wait for write complete 
 goto  Wait2  
 bcf  EECON1,WREN ; Disable write 

We have predefined a constant, SAVADR, that identifies the address in EEPROM where we 
want to store the value.  In the example code, this is in an include file.  

In our example, the above code needs to be duplicated for the second byte, since we have two 
bytes of count to store. 

In this example, we really didn’t require the banksel binary, although on other PICs, this 
is a real trap, so it isn’t a bad practice to ensure bank 0 before accessing our variable.  Having 
selected bank 0, the banksel EEDATA is also redundant, although it would have been 
required had we eliminated the banksel binary. 

Reading the 
EEPROM 

Reading the EEPROM is fairly simple; we did it back in Lesson 14.  We simply store 
the address to read in EEADR, set the RD bit in EECON1, and read the result from 
EEDATA. 

 movlw  SAVADR ; Store the EEPROM address 
 banksel EEADR 
 movwf  EEADR  ; to the address register 
 banksel EECON1 
 bsf  EECON1,RD ; again command a read 
 banksel EEDATA 
 movf  EEDATA,W ; grab the high byte 
 movwf  binary+1 ; and store in high  

 Continued on next page 
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Saving the count to EEPROM, Continued 

Example B logic In the second example, the ability to store and restore the count in EEPROM will be 
added.  In this example the EEPROM interrupt is not yet used. It will be used in 
example C.  Here is the logic: 

 
Note that the dirty flag gets set by the “Read Count” block and the “Update Value” 
block, and cleared by the “Display Value” block. 

In the example code the buttons are not debounced.  In a real application this should 
be done to prevent excessive rewriting of the EEPROM. 

Building the 
example code 

The project is getting more complex.  To build the example code, you must include in 
your project: 

• Source files: 

o ConvBCD2 
o Disp16 
o InitTMR0 
o ISRa 
o L20b 
o RestCnt 
o SaveCntB 

• Library files: 

o LCDlib_84A 

• Linker Scripts 

o Lesson20 
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Multiple Interrupt Sources 

Introduction In the previous example, we stored our count in the EEPROM, but we had to spin in a 
tight loop waiting for the EEPROM write to complete.  It would make sense to 
handle an EEPROM completion interrupt so that our application could be off doing 
something useful rather than waiting for a flag to change.  (Admittedly, the example 
application is somewhat limited in the “useful” things it has to do). 

Managing State Unfortunately, it isn’t quite so simple.  In this case, two bytes must be written to 
EEPROM. The program must write the first byte, wait for an interrupt, write the 
second byte, and then wait for another interrupt.  All this while still processing timer 
interrupts.  Sounds complicated. 

Actually, it isn’t too bad.  A state variable called eestate will keep track of what 
needs to be done next. The variable will be set to zero initially, then to 1 when we 
need to write the first byte, 2 awaiting completion of the first byte, 3 when the second 
byte can be written, 4 awaiting completion of that write, and 5 when the operation is 
done. 

All the EEPROM operations, other than those handled by the interrupt service 
routine, will be consolidated in a subroutine called SaveCnt. 

 

The Button One detail to handle that wasn’t dealt with before.  Since the write will be underway 
while the main program is looping, care must be taken not to initiate a write while 
one is already in progress.  Since eestate already keeps track of that detail, this is 
easily handled: 
  movlw H'10'  ; Now check whether PB1 pressed 
  andwf PORTA,W ; 
  btfss STATUS,Z ; 
  goto CheckDirty ; No, see if display dirty 
  movf eestate,W ; eestate must be zero to 
  btfss STATUS,Z ; initiate a write 
  goto CheckDirty ; not = 0, don't write 
  movlw h'01'  ; Schedule a write because 
  movwf eestate ; we have a value to save 

 

Calling SaveCnt One “trick” that wasn’t mentioned in our definition of eestate. We have chosen to 
define it in such a way that our EEPROM handling routine gets called whenever the 
value of eestate is odd: 

  btfsc eestate,0 ; We call SaveCnt when bit 0 
  call SaveCnt ; is set (eestate = 1, 3, 5) 

 

 Continued on next page 
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Multiple Interrupt Sources, Continued 

SaveCnt The SaveCnt routine is called whenever eestate is odd.  The routine will need to 
check this value and: 

1 – Turn on LED and write first byte 
3 – Write second byte 
5 – Turn off LED and set eestate to 0 

We can do this simply with a table: 
  movlw HIGH(SaveCnt) ; Setup PCLATH for 
  movwf PCLATH  ; table call 
  rrf eestate,W ; Need to check only bits 
  andlw H'03'  ; 1 and 2 
  addwf PCL,F  ; Jump 
  goto FirstByte ; 1 (0)=First byte 
  goto NextByte ; 3 (1)=Second byte 
  goto Clearit ; 5 (2)=Done  

Note that we know the value is odd since that is the only way we can get here, so we 
divide eestate by two and mask it (for safety) before adding it to the PCL. 

The FirstByte and NextByte routines will be the same except for the locations used in 
the file register and EEPROM.  For only two bytes, it isn’t worthwhile to try to index 
these through the FSR, so we will simply duplicate the first part of the code, and then 
jump to common code: 
FirstByte 
  movlw  H'06'  ; Top LED on 
  movwf  PORTB  ; to indicate write in  
  movwf  LEDflg  ; progress 
 
  banksel EECON1  ; Check to be sure a write 
  btfsc  EECON1,WR ; is not already in progress
  return    ; Yes, we'll be back 
  movlw  SAVADR  ; Set address in EEPROM 
  banksel EEADR 
  movwf  EEADR  ; to be written 
  banksel binary 
  movf  binary,W ; Set data to be written 
  banksel EEDATA 
  movwf  EEDATA  ; 
  goto  ContWrite 

Note that the top LED is turned on by setting a value in LEDflg, this is something 
not done for the second byte.  For the second byte, SAVADR+1 and binary+1 are 
used, but otherwise the code is the same.  Note that EECON1 is in bank 1, so a 
banksel is necessary before writing to it.  Afterwards, switch back to bank 0. Again, 
some redundant bank switches are included in the code for clarity. 

For both bytes we then jump to: 

 Continued on next page 
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Multiple Interrupt Sources, Continued 

SaveCnt  
(continued) 

ContWrite 
  banksel EECON1  ; 
  bcf  INTCON,GIE ; Turn off interrupts 
  bsf  EECON1,WREN ; Enable write 
  movlw  H'55'  ; This sequence is 
  movwf  EECON2  ; required before the 
  movlw  H'AA'  ; EEPROM may be written 
  movwf  EECON2  ; 
  bsf  EECON1,WR ; Start write 
  bsf  INTCON,EEIE ; Enable EEPROM Interrupt 
  bsf  INTCON,GIE ; Re-enable interrupts 
 

Note that interrupts are disabled while writing the H’55’ and H’AA’ to EECON2.  This 
sequence must be performed exactly in order for the write to occur.  An interrupt 
during this sequence would cause the write to fail.  After writing the 55 and AA as 
we did in the non-interrupt version, the EEPROM write completion interrupt is 
enabled: 
  banksel eestate 
  incf  eestate,F ; Ready for next step 

When the write is complete, we want to disable the EEPROM interrupt, reset 
eestate to zero, and turn off the LED: 

 
Clearit 
  bcf  INTCON,EEIE ; Disable EEPROM Interrupt 
  clrf  eestate ; Return to state 0 
  movlw  H'0e'  ; All LEDs off 
  movwf  PORTB 
  movwf  LEDflg 
 

In the above cases, the various errorlevel directives have been omitted for clarity.  
When they are left out, a number of assembler warnings will be generated.  These 
warnings occur whenever a non-bank 0 location is accessed, whether or not the bank 
bits have been set correctly. 

The Interrupt 
Service Routine 

The interrupt service routine (ISR) must still handle the timer, but it must also deal 
with the EEPROM interrupt.  The interrupt flags must be tested to determine which 
interrupt caused the ISR to be called: 
  btfss  INTCON,T0IF ; Timer interrupt flag 
  goto  IRQEEPROM ; No, go check EEPROM 

When the EEPROM interrupt is recognized, all that is required is to increment 
eestate (and, of course, clear the interrupt flag): 

  bcf  IFREG,EEIF ; Clear the interrupt flag 
  incf  eestate,F ; Remember we handled it 

 

 Continued on next page 
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Multiple Interrupt Sources, Continued 

Overall EEPROM 
Flow 

Handling multiple bytes can get a little confusing.  The following figure shows the 
overall flow of the program logic: 

 
As in the previous example, we set the dirty flag whenever we update the count, and 
clear the dirty flag whenever we have displayed the count. 

Note that the ISR has been kept as simple as possible.  Whenever dealing with 
interrupts, the time that the interrupts are disabled should be kept as short as possible.  
Since interrupts are disabled while processing an interrupt, this means that the ISR 
should be as short as possible.  Interrupts are also disabled while setting up the 
EEPROM writes.  This was necessary since part of that sequence is critical.  
However, rather than disabling interrupts for the entire time, we only disabled them 
for the minimum time necessary.  This delay in updating the count is unlikely to be 
noticed in our application.  Note, however, that the TMR0 register continues 
counting, so while the display update might be put off for a short time, there is no 
cumulative error in the count. 

 Continued on next page 
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Multiple Interrupt Sources, Continued 

Testing the 
Code 

The modules that must be included in the project are very similar to the previous 
exercise, except for the main, the use of the more elaborate ISR, and the more 
elaborate EEPROM routine: 

• Source files: 

o ConvBCD2 
o Disp16 
o InitTMR0 
o ISRc 
o L20c 
o RestCnt 
o SaveCntC 

• Library files: 

o LCDlib_84A 

• Linker Scripts 

o Lesson20 

As before, one should be careful to test all the conditions that might be encountered.  
Watch to see that the values increment into the second byte, store and restore the 
count, observe the LED behavior when storing and restoring, and be sure to test 
restoring a value less than 255 when the count is greater, and a value greater than 255 
when the count is less. (Since the value is saved in EEPROM, the stored value should 
be preserved across reset and power down). 
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Additional Experiments 

Introduction The PIC-EL does not have inputs on the pins that may be used for other interrupts, so 
we were unable to run experiments demonstrating the RB0/INT and PORTB change 
interrupts.  However, in Lesson 19, we built a board with a PIC16F87x which has 
some of those pins free. 

RB0/INT The RB0/INT interrupt allows the PIC to be interrupted when a transition is detected 
on the RB0 pin (pin 21 on the 872/3/6).  This pin is free on the test circuit.  The 
student wishing to test this interrupt might add some circuitry to this pin, perhaps a 
low speed oscillator such as a 555 to experiment with this interrupt.  

Note that the pin is triggered either on a rising or falling edge, selectable by the 
program. 

PORTB Change The PORTB Change interrupt, when enabled, causes an interrupt whenever the input 
to bits 4 through 7 of PORTB are changed.  The experimental board leaves bits 4 and 
5 open, and bits 6 and 7 are only used for programming, so they may be used for the 
experiment provided they are lightly loaded during programming.  Using a normally 
open pushbutton with a high-value pullup would be one way to do this. 

Other Interrupts In addition to the interrupts shared with the PIC16F84A, the PIC16F87x family has a 
number of other interrupts.  There are two additional timers, each of which has an 
interrupt, there are two capture/compare ports which also have interrupts.  These 
parts contain a serial port which can also notify the program of completion via an 
interrupt. 

One of the more interesting interrupts is the A/D completion interrupt.  Since we 
experimented with the A/D in Lesson 19, the interested student might modify the 
Lesson 19 code to utilize this interrupt. 
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Wrap Up 

Summary In this lesson we have examined interrupts on the PIC16F84A, and learned how to 
write to the EEPROM.  Both the timer interrupt and the EEPROM write completion 
interrupt have been used in the examples.  The PIC-EL hardware doesn’t give us an 
opportunity to test the 84A’s other two interrupt sources, the INT interrupt (transition 
of RB0) and the PORT B interrupt (change in bits 4-7). 

Although there are a few things that must be considered, interrupt processing is not 
terribly difficult, and in some cases, can simplify our code.  Interrupts allow writing 
code that is more responsive to external events, and avoid spending precious compute 
cycles polling for an event. 

Coming Up In the next lesson, these same 3 exercises will be ported to other processors.  
Virtually any 18 pin PIC can be used in the PIC-EL, but two of them, the PIC16F54 
and the PIC16F716 do not have the on-chip resources to perform the exercises.  Both 
lack EEPROM, and the 54 does not have enough memory. 

The student wishing to perform the exercises in the next lesson might want to pick up 
a PIC16F628.  The lesson will also examine the 648A, 819 and 88, however those 
parts are not supported by FPP, so other programming software must be selected.  
Your author uses DL4YHF’s WinPIC for those parts, but there are a large number of 
choices which can be configured to work with the PIC-EL.  The interested student 
who has installed WinPIC might browse the catalogs of some parts suppliers and pick 
up other 18 pin PICs that look as if they might be candidates for future projects and 
can be had at attractive prices. 

 


