Lesson 20 Elmer 160

Interrupts E160L20.doc
Lesson 20
Interrupts
Overview
Introduction In many of our earlier examples, the PIC has spent most of its time pollimy som

input or timer. Interrupts allow us to do useful work, and be notified when some
event occurs that we care about.

In this section Following is a list of topics in this section:
Description See Page
Overview 2
The Timer Interrupt 5
Saving the count to EEPROM 8
Multiple Interrupt Sources 11
Additional Experiments 16
Wrap Up 17
Revised: 06/14/07 09:08 AM Page 1 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20

E160L20.doc Interrupts
Overview
Introduction In many applications we want the PIC to “walk and chew gum” at the samme By

periodically polling inputs or polling timers, the PIC can appear to carrgnaliiple
tasks. However to be responsive to rapidly occurring events, the pollistgoe done
very frequently. But more frequent polling means fewer compute cyesaiable for
the "background" task. Using interrupts allows fast response to exteems ev
without wasting compute time on polling.

In theory, an interrupt is fairly simple. When an event happens that needdiatene
attention, the interrupt taps the processor on the shoulder to go off andthiéndle
new task. Once that task is done, the processor can return to what it was doing.

Mechanics The mechanics of an interrupt are simple in concept. When some hardware event
causes an interrupt; the current program counter is pushed onto th@ baackhe
program counter is loaded with the address of the interrupt service rdatihe
PIC16 family, this address is H'04"'.

In practice, more than just the program counter must be saved and restibred. If
interrupt service routine does much of anything, it will probably change th& $SA
and "W" registers. Thus we need to save the values in those relyeftmes
proceeding with interrupt processing. The interrupt may also call on cthetisa
within the PIC which also must be properly saved and restored. Thisnmo#ie
important, and sometimes the most difficult, part of interrupt praugssi

Interrupt The PIC16F84A has only 4 interrupt sources:

Sources . : :
Name Function Enable Bit Flag Bit
RBO/INT A transition of the RBO pin INTE INTF
TMRO An overflow of the TMRO register TOIE TOIF
PORTB A change in PORTB bits 4-7 RBIE RBIF
EEPROM Completion of an EEPROM write EEIE EEIF

Other PICs have additional interrupts, appropriate to the peripherdakireed on
those PICs. Note that bit names ending in IH arerruptEnable, those ending in IF
arelnterruptFlags.

Controlling the The INTCON register contains a bit, GI&lpbal I nterruptEnable), which enables

interrupts all interrupts. As long as GIE is false, no interrupt from any sourd¢@edglr.
INTCON also contains a bit to enable each of the individual ingestas shown in
the table above. To receive an interrupt, both the GIE bit and one oféteiin
enable bits must be set.

When the interrupt does occur, a flag is set to indicate the specifies®tese flags
are also shown in the table.

Continued on next page

Page 2 of 17 Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts E160L20.doc

Overview, Continued

When an interrupt occurs, a number housekeeping chores must be done. The PIC
hardware automatically saves the program counter. The hardware alsctioge

global interrupt enable to prevent a second interrupt from occurring thieilfirst is
being processed. When a return from interrupt instructietfi§) is executed, the
program counter is automatically restored and the GIE is turned back on.

Saving Context

However the programmer has certain responsibilities. The speaifithfat caused
the interrupt must be cleared to prevent the same interrupt from beingesgadc
The programmer must also determine which registers must be savedtaretires
that the main program can pick up where it left off. Remember that an intearupt
occur at any place in the main program, so all possibilities must be covered.

The STATUS and W registers are most often saved and restored in ann&R. Si
doing almost anything changes the STATUS, this can be tricky. The sokifdbiti
of boilerplate code that begins and ends most interrupt routines.

Isr:

movwf w_temp ; Save off the W register
swapf STATUSW ; And the STATUS (use swapf
movwf status_temp ; SO as not to change STATUS)

[Interrupt handling code goes here]
bcf (interrupt flag)

swapf status temp,W ; Restore the status

movwf STATUS ; register

swapf w_temp,F ; Restore W without disturbing
swapf w_temp,W ; the STATUS register

retfie

Since themovwf instruction doesn’t influence the status, the "W" can be saved
directly. Next theswapf allows moving the contents of the STATUS register into
W without affecting the status bits. The nybbles of STATUS are revarskd saved
version, but get reversed again in the restore process.

The STATUS register is restored with a simplevwf. However restoring W this
way would affect the status bits. So #veapf trick is used again, this time twice.
The first time to get the nybbles backward so the seswaghf ends up with the
correct result in W.

There may be other registers that must also be saved and restored dependiiag on
assets of the PIC the ISR uses. These might include the FSR and PCLAQJ Hotsls
that we must clear the flag for the interrupt we just handled. If we demninterrupt
will re-assert itself as soon as we return from the ISR.

Continued on next page

Revised: 06/14/07 09:08 AM Page 3 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20

E160L20.doc Interrupts

Overview, Continued

Interrupt Priority ~ On complex instruction set processors, there are usually a number of interrup
priorities; that is, an interrupt can itself be interrupted by a higherity interrupt.
On all the PIC16Fxx and smaller parts, all interrupts have the same hauiveaity,
but the effective priority can be managed by the software.

When an interrupt occurs, the software must determine which deviaddies
interrupt by examining the interrupt flags. The order in which this is desengally
determines the priority of an interrupt.

In many applications, especially on the PIC16F84, there will only be omeujpite
enabled; in this case, the checking of other interrupt flags is ngrekgtiped.

Page 4 of 17 Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts

E160L20.doc

The Timer Interrupt

Introduction

For our first experiment, we will examine the TMRO interrupt. We hage se
earlier lessons how we can use the TMRO register to keep tracpeédltime while
we are off doing something else. The TMRO interrupt, when enabled, causes an
interrupt whenever the TMRO register overflows.

Overall view of
our Program

Our program will consist of a tight loop that checks a “dirty” flag tovsleether a
value in memory has been updated. If the flag is set, we will display the value,
otherwise we will go back and check the flag again:

i TMRO Interrupt
> Check Dirty
Flag
No Update
Value
Yes l
Display
Value

We will rely on the LCD routines from Lesson 17 as well as the déciomaersion
routine from Lesson 18.

Displaying a 16-
bit Value

Because all of the experiments in this lesson will require displaying & i&ue on
the LCD, it makes sense to make a subroutine to do that which we can sirhiply cal
each of our programs.

The ConvBCD2 routine takes a two byte value and returns a 5 byte resuisplay
this, we will need to loop through each of the 5 characters, sending theentGD.
Since the same number of characters are sent each time, the LdCBohbe erased.
Instead we can simply set the LCD cursor position, which is slightigrfaaster is
good because we would like to be able to update the values quickly, and timg flash
caused by erasing the display is a little annoying.

Continued on next page

Revised: 06/14/07 09:08 AM Page 5 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20

E160L20.doc Interrupts

The Timer Interrupt, Continued

Displaying a 16- The code for the display routine will then look something like this:

bit Value Disp16:

(continued) call ConvBCD2 ; Convert the value to BCD
call LCDzero ; Cursor to left of LCD
movlw digits ; Pick up address of output
movwf FSR ;into FSR
moviw H'05' ; Count of number of
movwf count ; digits to display

Displ16L
movf INDF,W ; Get current digit
call LCDletr ; Display it
incf FSR,F ; Point to next digit
decfszcount,F ; Count down one we just did
goto Displ6L ; Done? No, do it again
movf LEDflg,W ; Set the LEDs to the
movwf PORTB ; desired condition
clrf dirty ; Value is now current
return

Because the LCD and the LEDs share pins on the PIC-EL, the LEDs flashihehe
LCD is updated. To reduce that flashing, we will turn off the LEDs e/ we
write the LCD. This write to PORTB doesn't affect the LCD since weareful not
to raise the LCD enable pin. Instead of simply storing a literal, vatigniflg is
used so that later we can use the LEDs as an output.

Also note that we have taken care to clear the “dirty” flag dftemtrite. Our ISR
will set the dirty flag whenever the value is changed. In this way,@feis
rewritten whenever the data changes, and only when the data changes.

The main The main program loop is pretty straightforward. The value is displayee &b,
program loop then spin on the dirty flag until it becomes true, at which time we willajigpe
value again:
Loop
call Displ6 ; Display the value in memory
Loopl
movf dirty, W ; Test whether a new value
btfsc STATUS,Z
goto Loopl ; No, check again
goto Loop ; Yes, go do display
Initialization The LCD is initialized, along with the values for the dirty fldge binary value to

count, and th€EDflg . Since the timer initialization will be reused, it is put in a
separate routine. That initialization is essentially the sagria Lesson 13.

After initialization, it is now safe to turn on interrupts. Both theetiimterrupt and
the global interrupt enable must be turned on:

bsf INTCON,TOIE ; Allow timer interrupt
bsf INTCON,GIE ; Enable interrupts

Continued on next page

Page 6 of 17 Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160
Interrupts E160L20.doc

The Timer Interrupt, Continued

The Interrupt The interrupt service routine is responsible for incrementingabater. The routine
Service Routine gets called whenever the timer overflows and causes an interrupt. Tine raust
increment the counter and set the dirty flag.

However, there are also some “housekeeping” tasks. Since we have notidea of
processor’s state at the time the interrupt occurred, the STATUS aadi$ters

must be saved before the ISR changes them. Of course, these must be restored on
exit.

Since the state of the bank bits when the interrupt occurred is unknowegaé¢o
select the bank before accessing any file registers, even ifteey bank 0. On the
F84 this is only necessary for special function registers; theajgnegpose registers
are accessible in all the banks. So far, all the registers we usd@Rtlee also in
all banks. However, later this could become an issue, and is one of théaptrimws
of interrupt handling. Finally, the timer interrupt flag must be ctbaefore exiting;
otherwise the timer interrupt will re-assert itself the instae try to exit the ISR.

Saving the status is done in a somewhat “rote” fashion:

IRQSVCcode
movwf w_temp ; Save off the W register
swapf STATUS,W : And the STATUS

movwf status_temp ;

The actual work we need to do in the ISR is pretty basic:

; Bump up the two-byte value we will display

incf binary+1,F ;Increment low byte

btfsc STATUS,Z ; Overflow? (incf doesn't affect C)
incf binary,F ; Increment high byte

incf dirty,F ; Note that value changed

The restore is again pretty much copied from the datasheet, except we must
remember to clear the interrupt flag

bcf INTCON,TOIF ; Clear the old interrupt

swapf status_temp,W ; Restore the status

movwf STATUS ; register

swapfw_temp,F ; Restore W without disturbing

swapf w_temp,W ; the STATUS register

retfie
Testing the Once we build and assemble the project, and run the code in our PIC-EL, we should
code see a five digit number incrementing quite quickly. Wait until the coxggearls 255

to be sure we have handled incrementing the second byiteanf correctly.

Revised: 06/14/07 09:08 AM Page 7 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20

E160L20.doc Interrupts

Saving the count to EEPROM

Introduction In an earlier lesson, we examined reading the EEPROM. However, we avamided t
problem of writing the EEPROM. It turns out that the EEPROM write is otlgosg
interrupt sources we want to examine, so now we will look at writing the BEPR

The EEPROM is often used to store calibration constants, some of which may be
quite important or difficult to recover. Because of this, it is impurtiaat a program

not accidentally alter the contents of EEPROM. To make it difftoutiadvertently
write to EEPROM, Microchip has the programmer “jump through hoops” to actually
perform the write.

Writing to EEPROM isn't difficult, but there are several steps wioodg purpose is
to prevent an accidental write.

The EEPROM To write to the EEPROM, the following sequence of steps must be executed:
writing « Check that a write is not in progress (EECON1 bit WR is clear)
sequence

* Write the desired EEPROM address to EEADR
* Write the data value to be stored to EEDATA

* Set the WREN bit of EECONL1 to enable writing
» Disable interrupts if not already disabled

* Write a H'55' to EECON2

e Write a H'AA’ to EECON2

» Set the WR bit of EECON1

¢ Enable interrupts (if being used)

e Clear the WREN bit of EECON1

Note that the steps between turning off interrupts and turning thenohaukist
happen in the exact sequence with no interruption.

The write can take some time, a few milliseconds depending on the suppgievolta
and data to be written. When the write is complete, the WR bit will beedieand
EEIF will be set. If interrupts are enabled and EEIE is set, an inteviliptcur.

Continued on next page

Page 8 of 17 Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts E160L20.doc

Saving the count to EEPROM, continued

The EEPROM The above sequence, in the case where we are not using the EEPROM write
writing code completion interrupt, would look like the following:
banksel EECON1 ; Bank 1
Waitl btfsc EECON1,WR ; Be sure no write in progre ss
goto Waitl ;
banksel EEADR ; Bank 0
moviw SAVADR ; Set address in EEPROM
movwf EEADR ; to be written
banksel binary ;
movf binary, W ; Set data to be written
banksel EEDATA ;
movwf EEDATA
banksel EECON1 ; Bank 1
bcf INTCON,GIE ; Turn off interrupts
bsf EECON1,WREN ; Enable write
moviw H'55' ; This sequence is
movwf EECON2 ; required before the
moviw H'AA' ; EEPROM may be written
movwf EECON2 ;
bsf EECON1,WR ; Start write
bsf INTCON,GIE ; Turn interrupts back on
Wait2 btfsc EECON1,WR ; Wait for write complete
goto Wait2
bcf EECON1,WREN ; Disable write

We have predefined a constant, SAVADR, that ide#ithe address in EEPROM where we
want to store the value. In the example code,ishis an include file.

In our example, the above code needs to be duptidat the second byte, since we have two
bytes of count to store.

In this example, we really didn’t require thenksel bi nary, although on other PICs, this

is a real trap, so it isn't a bad practice to easank 0 before accessing our variable. Having
selected bank 0, thHeanksel EEDATA is also redundant, although it would have been
required had we eliminated thanksel bi nary.

Reading the Reading the EEPROM is fairly simple; we did it back in Lesson 14. \Wa\sstore
EEPROM the address to read in EEADR, set the RD bit in EECONL1, and read thdraault
EEDATA.

moviw SAVADR ; Store the EEPROM address

banksel EEADR

movwf EEADR ; to the address register

banksel EECON1

bsf EECON1,RD ; again command a read

banksel EEDATA

movf EEDATAW ; grab the high byte

movwf binary+1 ; and store in high

Revised: 06/14/07 09:08 AM

Continued on next page

Page 9 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Lesson 20

Elmer 160
E160L20.doc

Saving the count to EEPROM, continued

Interrupts

Example B logic In the second example, the ability to store and restore the count in EEPRQi will
added. In this example the EEPROM interrupt is not yet used. It will be used in
example C. Here is the logic:

Read
Count

PB1 (&S Store
ressed? Count

No | I

\ 4

Check Dirty
Flag

Yes

Display
Value

TMRO Interrupt

Update
Value

Note that the dirty flag gets set by the “Read Count” block and the “Updéute’V

block, and cleared by the “Display Value” block.
In the example code the buttons are not debounced. In a real application this should

be done to prevent excessive rewriting of the EEPROM.

Building the The project is getting more complex. To build the example code, you must include in

example code your project:

¢ Source files:

(0]

O O0OO0OO0oo

(0]

ConvBCD2
Disp16
INitTMRO
ISRa

L20b
RestCnt
SaveCntB

* Library files:

(0]

LCDlib_84A

e Linker Scripts

(0]

Lesson20

Page 10 of 17

Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts E160L20.doc

Multiple Interrupt Sources

Introduction In the previous example, we stored our count in the EEPROM, but we had to spin in a
tight loop waiting for the EEPROM write to complete. It would make sense to
handle an EEPROM completion interrupt so that our application could be off doing
something useful rather than waiting for a flag to change. (Admittedlgxdmaple
application is somewhat limited in the “useful” things it has to do).

Managing State Unfortunately, it isn’t quite so simple. In this case, two bytes must lemwto
EEPROM. The program must write the first byte, wait for an interrujite wre
second byte, and then wait for another interrupt. All this while stitgssing timer
interrupts. Sounds complicated.

Actually, it isn't too bad. A state variable calleest at e will keep track of what
needs to be done next. The variable will be set to zero initially, then torilwehe

need to write the first byte, 2 awaiting completion of the first byte, e second
byte can be written, 4 awaiting completion of that write, and 5 when the opegation i
done.

All the EEPROM operations, other than those handled by the interrujateserv
routine, will be consolidated in a subroutine catbageCnt .

eestate Meaning Caused by Next Change

0 No EEPROM activity SaveCnt Button Press

1 Write first byte scheduled main Write Started

2 Write first byte pending SaveCnt Write Complete

3 Write second byte scheduled ISR Write Started

4 Write second byte pending SaveCnt Write Complete

5 EEPROM write complete ISR Ready for next button press
The Button One detail to handle that wasn’t dealt with before. Since the write will bewsale

while the main program is looping, care must be taken not to initiateeawlite
one is already in progress. Sirezst at e already keeps track of that detail, this is
easily handled:

moviw H'10' ; Now check whether PB1 pressed

andwf PORTAW ;

btfss STATUS,Z ;
goto CheckDirty ; No, see if display dirty

movf eestate, W ; eestate must be zero to
btfss STATUS,Z ; initiate a write

goto CheckDirty ; not=0, don't write

moviw h'01' : Schedule a write because
movwf eestate ; we have a value to save

Calling SaveCnt One “trick” that wasn’t mentioned in our definition@ést at e. We have chosen to
define it in such a way that our EEPROM handling routine gets calledewbethe
value ofeest at e is odd:

btfsc eestate,0 ; We call SaveCnt when bit 0
call SaveCnt ; is set (eestate = 1, 3, 5)

Continued on next page

Revised: 06/14/07 09:08 AM Page 11 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20

E160L20.doc Interrupts

Multiple Interrupt Sources, Continued

SaveCnt The SaveCnt routine is called whenewest at e is odd. The routine will need to
check this value and:

1 — Turn on LED and write first byte
3 — Write second byte
5 — Turn off LED and sedest ate to O
We can do this simply with a table:
movlw HIGH(SaveCnt), Setup PCLATH for

movwf PCLATH ; table call

rrf eestate, W ; Need to check only bits
andlw H'03' ;land?2

addwf PCL,F ; Jump

goto FirstByte ; 1 (0)=First byte

goto NextByte ; 3 (1)=Second byte
goto Clearit ;5 (2)=Done

Note that we know the value is odd since that is the only way we can gesdhere
divide eest at e by two and mask it (for safety) before adding it to the PCL.

The FirstByte and NextByte routines will be the same except édottations used in
the file register and EEPROM. For only two bytes, it isn't worthwhil@ytdo index
these through the FSR, so we will simply duplicate the first part obithe, @and then
jump to common code:

FirstByte
moviw H'06' ; Top LED on
movwf PORTB ; to indicate write in
movwf LEDflg ; progress
banksel EECON1 ; Check to be sure a write
btfsc EECON1,WR ; is not already in progress
return ; Yes, we'll be back
movlw SAVADR ; Set address in EEPROM
banksel EEADR
movwf EEADR : to be written
banksel binary
movf binary,W ; Set data to be written
banksel EEDATA
movwf EEDATA ;
goto ContWrite

Note that the top LED is turned on by setting a valueeinf | g, this is something

not done for the second byte. For the second ByigADR+1 andbi nary+1 are

used, but otherwise the code is the same. Not&HGANL is in bank 1, so a

banksel is necessary before writing to it. Afterwards, switch back to bank 0. Again,
some redundant bank switches are included in the code for clarity.

For both bytes we then jump to:

Continued on next page

Page 12 of 17 Revised: 06/14/07 09:08 AM

John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts E160L20.doc

Multiple Interrupt Sources, Continued

ContWrite

SaveCnt banksel EECON1 :

(continued) bcf INTCON,GIE ; Turn off interrupts
bsf EECON1,WREN ; Enable write
movlw H'55' ; This sequence is
movwf EECON2 ; required before the
movlw H'AA' ; EEPROM may be written
movwf EECON2 ;
bsf EECON1,WR ; Start write
bsf INTCON,EEIE ; Enable EEPROM Interrupt
bsf INTCON,GIE ; Re-enable interrupts

Note that interrupts are disabled while writing the H’'55" and H'AAEECON2. This
sequence must be performed exactly in order for the write to occur. Amijptte
during this sequence would cause the write to fail. After writing Shaensl AA as
we did in the non-interrupt version, the EEPROM write completion interrupt is
enabled:

banksel eestate
incf eestate,F ; Ready for next step

When the write is complete, we want to disable the EEPROM interrspt, re
eest at e to zero, and turn off the LED:

Clearit
bcf INTCON,EEIE ; Disable EEPROM Interrupt
clrf eestate ; Return to state O
movlw H'Oe' ; All LEDs off
movwf PORTB
movwf LEDflg

In the above cases, the vari@us or | evel directives have been omitted for clarity.
When they are left out, a number of assembler warnings will be generdtese T
warnings occur whenever a non-bank O location is accessed, whether or not the bank
bits have been set correctly.

The Interrupt The interrupt service routine (ISR) must still handle the timaritlmust also deal
Service Routine Wwith the EEPROM interrupt. The interrupt flags must be tested ¢éordigte which
interrupt caused the ISR to be called:

btfss INTCON,TOIF ; Timer interrupt flag
goto IRQEEPROM ; No, go check EEPROM

When the EEPROM interrupt is recognized, all that is required is tanecrte
eest at e (and, of course, clear the interrupt flag):

bcf IFREG,EEIF ; Clear the interrupt flag
incf eestate,F ; Remember we handled it

Continued on next page

Revised: 06/14/07 09:08 AM Page 13 of 17

Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20
E160L20.doc Interrupts

Multiple Interrupt Sources, Continued

Overall EEPROM Handling multiple bytes can get a little confusing. The following fighms the

Flow overall flow of the program logic:
Read Interrupt
Count
Save
State
Schedule
EEPROM
Yes | Increment
binary
No I
Handle
EEPROM Yes
Increment
eestate
No |
Restore
State
Display
Value

As in the previous example, we set the dirty flag whenever we updateuthie and
clear the dirty flag whenever we have displayed the count.

Note that the ISR has been kept as simple as possible. Whenevay deidli
interrupts, the time that the interrupts are disabled should be kept aasshossible.
Since interrupts are disabled while processing an interrupt, this niednke ISR
should be as short as possible. Interrupts are also disabled whilg sptthe
EEPROM writes. This was necessary since part of that sequenci#. crit
However, rather than disabling interrupts for the entire time, we onlgldgsthem

for the minimum time necessary. This delay in updating the count is yriiikbe
noticed in our application. Note, however, that the TMRO register cestinu
counting, so while the display update might be put off for a short time, there is no
cumulative error in the count.

Continued on next page

Page 14 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160
Interrupts E160L20.doc

Multiple Interrupt Sources, Continued

Testing the The modules that must be included in the project are very similar toe¥ieys
Code exercise, except for the main, the use of the more elaborate ISR, and the more
elaborate EEPROM routine:

* Source files:

o ConvBCD2
Displ6
INitTMRO
ISRc

L20c
RestCnt

0 SaveCntC

O O0OO0OO0o0Oo

* Library files:

o LCDIlib_84A
* Linker Scripts

0 Lesson20

As before, one should be careful to test all the conditions that might benteied.
Watch to see that the values increment into the second byte, store arelthest
count, observe the LED behavior when storing and restoring, and be sure to test
restoring a value less than 255 when the count is greater, and a valuetijeep?55
when the count is less. (Since the value is saved in EEPROM, the wadire should
be preserved across reset and power down).

Revised: 06/14/07 09:08 AM Page 15 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

Elmer 160 Lesson 20
E160L20.doc Interrupts

Additional Experiments

Introduction The PIC-EL does not have inputs on the pins that may be used for other infsaupts
we were unable to run experiments demonstrating the RBO/INT and PORTR:chang
interrupts. However, in Lesson 19, we built a board with a PIC16F87x which has
some of those pins free.

RBO/INT The RBO/INT interrupt allows the PIC to be interrupted when a transitioridstdd
on the RBO pin (pin 21 on the 872/3/6). This pin is free on the test circuit. The
student wishing to test this interrupt might add some circuitry to thjpprhaps a
low speed oscillator such as a 555 to experiment with this interrupt.

Note that the pin is triggered either on a rising or falling edgestable by the
program.

PORTB Change The PORTB Change interrupt, when enabled, causes an interrupt whenemnputhe
to bits 4 through 7 of PORTB are changed. The experimental board leaves bits 4 and
5 open, and bits 6 and 7 are only used for programming, so they may be used for the
experiment provided they are lightly loaded during programming. Using a ngrmall
open pushbutton with a high-value pullup would be one way to do this.

Other Interrupts In addition to the interrupts shared with the PIC16F84A, the PIC16F87x family has a
number of other interrupts. There are two additional timers, each of whiemhas
interrupt, there are two capture/compare ports which also have interfizise
parts contain a serial port which can also notify the program of completi@mvi
interrupt.

One of the more interesting interrupts is the A/D completion interrupte Sve
experimented with the A/D in Lesson 19, the interested student might miogify t
Lesson 19 code to utilize this interrupt.

Page 16 of 17 Revised: 06/14/07 09:08 AM
John J. McDonough Printed: 06/14/07 09:08 AM

Lesson 20 Elmer 160

Interrupts E160L20.doc
Wrap Up
Summary In this lesson we have examined interrupts on the PIC16F84A, and learned how to

write to the EEPROM. Both the timer interrupt and the EEPROM woitepletion
interrupt have been used in the examples. The PIC-EL hardware doesnisgin
opportunity to test the 84A’s other two interrupt sources, the INT intermapis{tion
of RBO) and the PORT B interrupt (change in bits 4-7).

Although there are a few things that must be considered, interrupt prodsssing

terribly difficult, and in some cases, can simplify our code. Interrupts allitimgv

code that is more responsive to external events, and avoid spending precioug comput
cycles polling for an event.

Coming Up In the next lesson, these same 3 exercises will be ported to other pcessor
Virtually any 18 pin PIC can be used in the PIC-EL, but two of them, the PIC16F54
and the PIC16F716 do not have the on-chip resources to perform the exercises. Both
lack EEPROM, and the 54 does not have enough memory.

The student wishing to perform the exercises in the next lesson might waek tgpi

a PIC16F628. The lesson will also examine the 648A, 819 and 88, however those
parts are not supported by FPP, so other programming software must be selected.
Your author uses DL4YHF's WinPIC for those parts, but there are a large nafmber
choices which can be configured to work with the PIC-EL. The interetsteerd

who has installed WinPIC might browse the catalogs of some parts suppliepick

up other 18 pin PICs that look as if they might be candidates for futuretprajet

can be had at attractive prices.

Revised: 06/14/07 09:08 AM Page 17 of 17
Printed: 06/14/07 09:08 AM John J. McDonough

