Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

Lesson 19
In-Circuit Programming

Overview
Introduction When the designer makes a new circuit, there is often some time spevitlopide
the software for that circuit. Removing the PIC from the cirquitiaserting it into a
programmer, then reversing the process for each change soon gets tedious.
Programming the PIC while still in the target circuit certainly dpag debugging
(and reduces wear and tear on the PIC's pins.). However, allowanceii@uit
programming needs to be made when designing the target circuit.
In this lesson, we will examine the requirements for designing circatisding
PICs, and look at special considerations required if we wish to progranGtie-PI
circuit. We will use our demonstration circuit as an excuse to exglorperipherals
lacking in the 16F84A, the analog input and the pulse width modulation output.
In this section Following is a list of topics in this section:
Description See Page
PIC Support Circuitry 2
ICSP Considerations 6
Designing the test board 10
Building the test board 12
Testing the Board 14
The A/D Converter 16
Pulse Width Modulation 19
Wrap Up 22
Revised: 11 May 2006 - 01:55 PM Page 1 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

PIC Support Circuitry

Introduction

All microprocessors and microcontrollers need some form of support. As a
minimum, they need to be provided power. Some require elaborate clockgircuitr
bus controllers, power management controllers, and often other types of support.

The PIC is appealing for embedded applications partly because it recriyditie
support. The PIC has program and data memory on-chip, some models have an
onboard clock. Depending on the part, the designer can get away with only power
and ground, although most require some clock support, and most also require some
reset circuitry.

Up until now, we have run our 16F84A on the PIC-EL board. In this lesson we
examine the requirements to make a PIC operate on its own stand-alone board.

Power

Obviously, the PIC requires power. What can be a bit of a surprise is howmtolera
the PIC is of the power it gets.

Nominally, all the 16F PICs are specified to run at 5 volts. All will romf#.5 to

5.5 volts. All PICs have an absolute maximum voltage they can toleratsutvit
damage, although they may not be specified to run at that voltage. On the 16F84A,
the maximum voltage on the Vdd pin is specified at 7.5 volts.

PICs have a wide range of low voltages, however. Most PICs can run attsme
lower voltages if the clock frequency is reduced. Newer ‘LF’ PI@sea down to
two volts. This can make these parts attractive for battery powesgdtist The
PIC16LF88, for example, can operate at 10 MHz at 3 volts, and 4 MHz at 2 volts.

The current demanded by the PIC is dependent on a number of factors. The current
required by the PIC itself is dependent on the clock frequency, the supply yvoltage
and the type of oscillator used. The 16F84A, for example, takes typically 1.8 mA
with a 4MHz XT oscillator and Vdd = +5.5V. With a 20MHz HS oscillatw part
requires 10 mA. A 16LF88 at 32kHz and 2 volts sips a mere 15 microamps.

In addition to the PIC itself, the Vdd pin must supply the current requiredyby a
outputs. Different PICs are capable of sourcing different amounts ohtLsoeit is
important to review the “Electrical Characteristics” portionhaf datasheet.

The datasheet shows the current available on each pin, each port, Efiod tiota

part. Sometimes there are unique characteristics to particusar @mthe

PIC16F84A, a single pin can source 25 mA. PORTB can source 100 mA, and the
entire PIC can only source 100 mA. If your circuit demands I/O that needs
significant current, it is important to review the datasheet befoignileg your

circuit.

Page 2 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

PIC Support Circuitry, Continued

Power If you ask professional PIC consultants, they will tell you that you plast a 0.1
Decoupling uF capacitor at each power pin (some PICs have more than one power pin).
7 | RA5/AN4 RB1[22 H5V
8 |vss RBO/INT | 21
9 20 (ap)
_9 |CLKIN Vdd ¢
10 |cLKOUT Vas| 19, TS
11 |RcomicK? RC7/RX| 18 <
12 |Rci/ceop2 Roe/TX |17 =
Power Decoupling

If the power supply should pick up noise, either from relays or motors, or from
significant current changes in the supply, the effect on the PIC can belictgirie.

In hobbyist practice, relays are relatively unusual, and rarely do we plaee |

current demands on the PIC. As a result, the decoupling capacitor can often be
omitted without ill effect. However, if it is needed, the symptonmskeavery hard to
diagnose. The experimenter would be well advised to simply keep a supplysof 0.1’
around and use them liberally.

Reset Circuitry The PIC has a reset pin named MCLR which can reset the processor if hoought
ground. For normal operation, the pin needs to be near Vdd (typically 5 volts).

The external circuitry must be given time to stabilize before thagmgtarts.
Some processors require elaborate reset circuitry to ensutbdhgtrt doesn't start
until the circuit it stable.

The PIC will not start for a few clock cycles after power is &gpliThe

configuration flag PWRTE_OMNllows the designer to insert another 72 ms. of startup
delay. As aresult, the PIC reset circuitry can consist of nothing mora thahp
resistor to Vdd. Since MCLR takes very little current, a high valuepisl

adequate. For the same reason, there is no penalty for a low value pullup. In other
words, almost anything will work, from a meg to a wire.

Some designers also like to decouple MCLR. Some circuits may requirgimeye
and designers might like an RC circuit on MCLR. In these cases, the valhee of t
pullup will affect the RC delay.

Continued on next page

Revised: 11 May 2006 - 01:55 PM Page 3 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

PIC Support Circuitry, Continued

Reset Circuitry Most 16F PICs have a PGM pin, normally RB3 or RB4. This pin enables low voltage
(continued) programming. The 16F84 does not have this pin, but most others do. For example the
16F628, which is often the hobbyist’'s next step up from the 16F84, does have a PGM
pin. On PICs with PGM, it is important that this pin not be raised to a it |
level before the MCLR pin becomes true (+5 volts). The designer needke tcere
that this pin will be at a low logic level during the startup of the tircu

Typically, a high-value pulldown is adequate to keep PGM low. How high, of
course, depends on your external circuitry, but the PGM pin as an input drgws onl
microamps, so values on the order of tens to hundreds of K are usually adequate.

Clock Circuitry Some of the newer PICs have an onboard clock. For these, no external clock
circuitry will be needed. All PICs can accept an external oscillatbthizuis
generally more complex than is needed. Most designs will use a crystedpac
resonator, or a simple RC.

It seems that hobbyists generally prefer to use quartz crystals. Micesgor
crystals are inexpensive and if one is only going to make a single copy @fdit,
the cost of the supporting capacitors is generally insignificant.

_7 |RAS/AN4
20pF _8 lvss
cill '~ L 9clkiN
= [I
co % —1—3 — 1% fowkour
11 |Rco/TiCKT
20pF
= 12 |rci/cep2
Crystal Oscillatc

If the capacitors are omitted, the crystal willitate at a slightly different frequency than its
marked frequency, but generally it will oscillatéor applications where the clock frequency
can be critical, such as a frequency counter @r difalay clock, the designer may choose to
replace one of the capacitors with a trimmer.

Ceramic resonators may also be used, and gerdwaiiyt require the capacitors. Resonators
are generally less expensive than crystals, ambarearly as fragile. As a result, most
professional designers prefer resonators to csydtidwever, they are not quite as accurate.

Continued on next page

Page 4 of 22 Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

PIC Support Circuitry, Continued

Clock Circuitry For most hobbyist applications, the processor éegyis not at all critical. For these
(continued) applications a simple RC circuit can be used tthedtequency.
8 [vss
G211 . 9lckin
L 47pll
- 10 |cLkouT
R2
Vdd 11 |Rco/T1CH
4.7K 12 |rci/cep
RC Oscillator

The RC oscillator frequency is much more temperature dependent thaystiag cr
and is also dependent on the supply voltage. Nonetheless, it is a cheap amd simpl
way to provide a clock signal to the PIC. The RC oscillator, however, takés a lit
more current than the crystal.

The required resistor and capacitor values must be selected based onmgtiaghs i
datasheet. RC oscillators may be used for clocks from a few kHz up to abéiz. 2 M
The values shown will result in a clock of a little over 1 MHz.

Summary As you can see, the PIC allows a lot of flexibility in the way it is irmaeted.
Perhaps less obvious, much of this is terribly non-critical. Thetattalmost

anything” will probably work has probably contributed to the PIC’s popularityram
hobbyists.

Revised: 11 May 2006 - 01:55 PM Page 5 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

ICSP Considerations

Introduction

As mentioned earlier, in-circuit serial programming allows us ta@stsoftware in

our circuit without the hassle of inserting and removing the PIC. It alseswak
expensive ZIF socket unnecessary. Indeed, our programmer really needs no socket,
and some popular programmers intended for in-circuit programming do not provide
them.

How is the PIC
programmed

All PICs can be programmed in an electrically similar fashion @heahcommands
sent to different parts can be quite different). The MCLR pin majakgthave three
states; when MCLR is near Vss (ground) the PIC is held in a resetwgtaete MCLR
is near Vdd (+5) the PIC runs its program, and when MCLR is at Vpp fpsual
around +13), the PIC is placed in programming mode.

Some PICs can also be placed into programming mode by raising the P@&Mapin
logic high before MCLR is raised. The 16F84 does not have this capability,eand th
very newest PICs also lack this capability, but since many 16F (and 1&-haee

it, handling the PGM pin properly should be addressed to avoid going into program
mode accidentally.

After the PIC has been placed in program mode, programming instructioesl are f
into the PGD pin and clocked with the PGC pin. PGC/PGD are usually shared with
RB6/RB7.

Handling
PGC/PGD

Generally, the designer is not interested in giving up pins, especialthe amialler
parts, so the PGC/PGD pins need to be available for some other use.

When the PIC is placed in reset mode, all I/O pins are set as inputs and thasgres
high impedance. If MCLR reaches Vpp quickly enough, the PIC program does not
start, and thus PGC/PGD cannot be placed in output mode. As long as the external
circuitry can be driven by the programmer these pins can be used by thetiapplica
and still be available for programming.

The critical consideration is that the application impose a small enoadhHhat the
programmer can overcome the external circuitry. This depends on thelpartic
programmer. The PIC-EL can provide fairly substantial drive, $ongsas the
designer takes reasonable care to keep the capacitance down on PG@GMRGIhy
circuitry can be used on those pins.

Some PICs provide the capability to interface with an external debuggereveigw

the debugger interface requires that PGD/PGC be dedicatedrarat ba used for

any other purpose. So the designer planning to use a debugger must avoid the use of
these pins for the application.

Page 6 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

ICSP Considerations, Continued

Handling MCLR While the PGC, PGD, and PGM pins are quite straightforward, MCLR psesemie
new challenges. If we were not planning in-circuit programming, we counfulys
pull MCLR up to Vdd (+5). However, the programmer is going to need to bring
MCLR up to Vpp, which is typically around 13 volts. A simple resistor coulavallo
this 13 volts to find its way to the rest of the circuit, which could poteptiainage
the PIC or other components. In a noisy environment, we may well want some
capacitance on MCLR, but such capacitance could prevent the programmer from
raising MCLR quickly enough.

To handle this, Microchip recommends the following circuit:

PIC16F873
Programmer MCLR —

1R
+———

RAQ/ANO

RA1/AN1

RA2/AN2

RA3/AN3

RA4/TOCKI

RAS/AN4

Vss

2]
_8]
4
5]
_6]
e
_8]
9]

CLKIN

MCLR Circuitrv

The diode prevents 13 volts from getting back into the Vdd bus, and at the re&me ti
“hides” the capacitor from the programmer. Microchip recommends a Sghottk

diode such as a 1N5711 for its speed. However, with a programmer that can provide
substantial drive, and short cables, a normal 1N4148 should work here.

On the PIC-EL, this problem is solved by a switch which removes the pullup resistor
during programming. A switch on the target circuit is certainly aroopbut dealing
with this automatically is more convenient and less expensive.

Values for the resistor and capacitor depend on the time constansitpeeti@vants
on reset, the potential noise level, and the amount of drive available from the
programmer.

Once again, in “experimental” practice, we don’t always need everything to be
perfect. MCLR draws very little current, so a pullup on the order of 106G &
adequate. If the remainder of the circuit can be counted on to draw enough current,
we can be guaranteed of sufficient voltage drop across R1 that the diedkyis
unnecessary. If our circuit wasly to be powered from the PIC-EL, the MCLR
circuitry could be eliminated altogether, and we could rely on the PIC-Bthstoi
manage MCLR.

Continued on next page

Revised: 11 May 2006 - 01:55 PM Page 7 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

ICSP Considerations, Continued

Connecting the
programmer

The final detail that must be handled is providing a means to connect the
programmer. On the PIC-EL, there is a “programming connector”, but on this
connector, the MCLR signal must be either at Vss or Vpp. There is no prowsion f
holding MCLR at Vdd, so in order to test our application, we need to disconnect the
PIC-EL, and provide power to our circuit. It would be more convenient to connect
directly to the PIC socket on the PIC-EL. This would allow use of the PIC-EL
“programming” switch, and we could then test our application much as wd@est P
EL applications, by simply throwing the switch.

If we are making up a cable for programming, the PIC-EL end can be handled by
using an 18 pin machine paocket. The cable should be fairly short; Microchip
recommends no more than 11 inches, but with the heavy drive available on the PIC-
EL it is likely that longer cables will work.

PIC-EL end of programming cable

For the target device end, we have some flexibility. We need ableastuctors;
Power, Ground, PGC, PGD and Vpp. We would like the connector to be small. We
would also like it to be inexpensive, and provide protection against insdmting t
connector backwards (we will likely plug and unplug many times as weiequg).

Your author favors clipping 6 pins from a long SIP connector. One socket can be
filled with solder and the corresponding pin clipped to provide polarity protecti
Although long SIP connectors are not terribly inexpensive, they can seniets gar
purposes, and the same part serves as both the cable and board ends.

The downside of this approach is that the cable is not held very firmlghwhn be
quite annoying when testing, and the socket seems to wear relatively quickly
resulting in a looser fit after just a few insertions.

Page 8 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WB8RCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

ICSP Considerations, Continued

Connecting the
programmer
(continued)

Machine Pin strip modifie

Microchip recommends using an RJ12 connector. This has the advantage &f a quic
and firm fit, and is widely available. RJ12 cables can be purchasedatdhe

discount department store. Jacks are not quite as readily avdilabtkey are

available from all the electronics parts houses.

[1-NC
| 2-PGC
3-PGD
4 -Gnd
5-Vdd
/_ 6 - MCLR

RJ-12 Jack

Microchip Suggested Connections

The main downside of the RJ12 is that the jacks are not compatible witbrtimeon
0.1” perfboard often used for prototyping. This leaves the experimentahwith
choice of etching some sort of adapter board, or using a pigtail to conngatkthe
the board.

Revised: 11 May 2006 - 01:55 PM Page 9 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

Designing the test board

Introduction

For our experiments, we want to be able to program a PIC on a separate board with
the PIC-EL, and use the board to demonstrate the analog input and pulse width
modulation output of some PIC models.

PIC Selection

The PIC choice is constrained by the parts available through FPP. The 16F872,
16F873, 16F874, 16F876, and 16F877 all fit the basic requirements. In a future
experiment, we would like to examine program memory paging, which means we
need to choose a PIC with more than 2K of memory, eliminating the 16F872
(although forthis lesson, that part is adequate). The 873, 4, 6, and 7 are all part of the
same family, and are very close. The 873 and 876 are 28 pin parts, while the 874 and
877 are 40 pin parts. The 873 and 874 have 4K of program memory, while the 876
and 877 have 8K. The same code will run on these four parts with the only change
being the processor include file. The 872 requires a different linkpt.scr

Analog Input

For testing the analog input, we will provide a variable voltage on ANO (pmt&2eo

28 pin parts). This can be provided by a simple pot acting as a voltage divider
between +5 and ground, with the wiper connected to ANO. Since we are using it as a
voltage divider, and the analog input draws little current, almost any valuélipot

work. A value for the pot lower than about 1K will draw more current thaessecy.

A value much higher than 100K might be noisy.

PWM Output

We can gauge a change in the pulse width modulation duty cycle by the change in
brightness of an LED. By connecting an LED to CCP1 (pin 13 on the 28 pin parts)
through an appropriate value resistor to +5, we can use the PWM output thevary
brightness of the LED. The resistor will need to be sized for the LEDua va
between 300 and 500 ohms will work with most LEDs.

Handling MCLR

We saw that Microchip recommends a resistor, capacitor, and Schottky bittie.
the substantial drive of the PIC-EL, an ordinary 1N4148 will probably work gs lon
as the programming cable is short.

The pot on ANO will draw some current. If we arrange the value of the pot to be
small enough compared to the value of the pullup on MCLR, we can avoid the diode
altogether, since we can count on the drop through the pullup preventing +13 from
getting back into the +5 supply. For example, if we have a 100K pullup and a 10K
pot, we won't be able to drive the +5 bus above the 7.5 volt rating of the PIC.

If we onlywant to power our circuit from the PIC-EL, we can avoid the pullup
entirely and just connect MCLR straight through to the PIC-EL.

Clock Circuitry

We saw that we have a number of options for controlling the microcontroller
frequency. For our experiments, any design that results in a clock betweebGbout
kHz and 20 MHz will be adequate.

Page 10 of 22

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Lesson 19

Elmer 160 Lesson 19.doc

Elmer 160

Circuit Programming

In-

HOHGAM ASNMyEd L 20 L 39vd
78981 20E090 ‘NOISIAZY yosaiduiig-pirog 3714
L
pleog Arelixny aidwig
YELR LIOU, €891 D1d - s
19008 Jld 13-01d O Raulog - ..
S]iaswod MosEoH [T
Sr|oasiEoy WetololciotS] oy
T {xusoy zasonoulET . % 5
e el LioLLeod T
2y <
T RS 1o [ar i g olv
| o¥ .
i N[%
=] ntogd ssAlg
= iau vNvavd T
= e DATTECE] sou B
e | Wedmey ENwiEvd 5 o>
I ' E
< = |rad aNvaYd [
S g =Y INviLyd
77 |oodeey anvavd|z 00,
9
77 |aodiey w1)\/\(_.m c
in —_e/sd9lod aNp——+— +
13
L z
3
ENNOD
13-01d

PEA
dda
U
and
0Dd
SSA

Page 11 of 22

John J. McDonough, WB8SRCR

Revised: 11 May 2006 - 01:55 PM

=
(oL,
To)
)
—
o
.
©
o
o
N
[
=
—
—
S
g
3
£
=
o

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

Building the test board

Introduction For reference purposes, we will use the schematic on the previcis Plaig is
almost as simple as it can get. The resistor on MCLR could be omittetligh case
the board could only be run from the PIC-EL. With the resistor, we can applys5 volt
to the programming connector and run the board independent of the PIC-EL.

Many substitutions are possible, as discussed earlier. If the experimentddike
to use a higher value potentiometer, then the diode circuitry shown on page 7 should
be used in place of the resistor.

A crystal or ceramic resonator may be used in place of the RC circtliefofock if
the experimenter would prefer more precise frequency control.

Physical It is recommended that the circuit be built up on a perfboard. The student should
Construction choose a larger board than necessary. Melting solder on a perfboartedikdit
eating potato chips; it's kind of hard to stop. There are plenty of PIC piroséaft
for additional experiments. A Radio Shack 276-147 is widely available knsal
plenty of room for future experiments.

In laying out the parts, the experimenter should consider future possbilitimve
room to reach unused PIC pins, but keep much of the board open.

Wiring is non-critical. This is not RF so square corners areijest Wire wrap wire
is often convenient for this sort of construction, but keep power and ground
connections a little larger.

Continued on next page

Page 12 of 22 Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WB8RCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19
In-Circuit Programming Elmer 160 Lesson 19.doc

Building the test board, continued

Connecting to The PIC-EL cable should use a machine-pin socket or 18 pin DIP header on the PIC-

the PIC-EL EL end, and a connector of the experimenter’s choice on the test board end. The
cable should be short and relatively low capacitance. The figure below shows a
minimum length cable, but a cable around 10 or 12 inches will work just fine.

Going Forward The PIC16F87x datasheet (30292c) is an important tool when doing the construction.
When we move ahead to programming, it becomes vital. Although the varicus PIC
share an instruction set, and even the pinouts of PICs with the same fimibsr
tend to be the same, each PIC has a different complement of I/O devices. The
developer needs to know what registers control what devices, and whatithes v
bits of each register mean.

Revised: 11 May 2006 - 01:55 PM Page 13 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

Testing the Board

Introduction

Once the board is constructed, check that the PIC Vdd pin connects to the PIC-EL
Vdd (+5), and that both PIC Vss (ground) pins connect to the PIC-EL Vss.vwRevie
the board for obvious shorts.

Having satisfied ourselves that we have caught the obvious, we need to load a
program into the PIC to ensure that we can program the part. The obvious thing to do
is the traditional flash a LED program.

The test program

For our first test, we will do the classic flash an LED. Pretty boringaloutick and
simple way to see that we can program the 16F873.

Create a new project, but remember this time to ginbdigure->Select Device and
select the 16F873. Copy 16f873.1kr to your project directory for easy acwkas@
it to the project. Our source, L19a.asm, will of course include p16f873.ieathet
pl6f84a.inc, but the config line will also be a bit different:

__config _RC_OSC& WDT_OFF& PWRTE_ON& BODEN_OFF&_ PVOFF& DEBUG_OFF

The 873 has a number of features that the 84A doesn’t. BOBEN_OFRurns off
brownout detection. Brownout detection causes an interrupt when the voltage get
low, and since we will not be handling that interrupt, we need to turn it off

_LVP_OFFturns off low voltage programming. We will be using the normal
programming, so we don’t want low voltage programming enabled.

Since we are using an RC oscillator instead of a crystal, we mudysgeCi OSC
instead of XT_OSC A designer choosing a different oscillator must use the
appropriate setting for the oscillator fuse.

Finally, DEBUG_OFRurns off the debugging interface. Since we don’t have an in-
circuit debugger, we don’t want the part to go into debug mode.

Blinking the LED

We won't belabor the details of flashing an LED, that’s been done a thousasd tim
before. However, it is worth pointing out a few details in the examplgram.

First, the DELAY value was chosen to produce a reasonable flashing on ctooks fr
1 MHz to 20 MHz. At 20 the flashing will be fast, and at 1 somewhat lethargic.
Decreasing DELAY lengthens the flashing cycle.

Notice that we put our code segment in PROG1:

STARTUP code
goto Start
PROG1 code

Start

This is necessary to avoid using the high program memory of the 873. Walkwill t
about something called “paging” in later lessons. For now, controlling thgdnf
our code allows us to avoid that detail. The linker script file shows usthat t
segment named PROGL lives at address 0x5.

Page 14 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

Testing the Board, cContinued

Blinking the LED The LED is wired to PORT C on the PIC. The 84A doesn't have a PORTC, but for
(continued) this example, it is just like PORT B.

Finally, we seem to have taken some extra steps in actually blinking the LED:

Loop
btfss LEDBIT ; Is LED bit zero?
goto SetHi ; No, go set it
bcf LEDBIT ; Yes, clear it
goto SetLED ; skip over set
SetHi bsf LEDBIT ; Set the LED bit
SetLED movf LEDstate, W ; Pick up the LED state
movwf PORTC ; and send it to PORTC
call Snore ; Wait a long while
goto Loop ; Go do it again

We maintain a copy of the desired value for PORT [(Eibstate , and write it to
PORTdnstead of usingcf/bsf instructions directly on PORT C. It turns out that
sometimes it is a problem to use bit set and clear instructiorsiylioa a port. In
this particular case, it happens it really doesn’t matter, but it isajgneonsidered
good form to avoid read-modify-write instructions directly on a port. In those
(relatively rare) cases where it does matter, the results canybeovdusing, so the
use of sshadow register (LEDstate) is preferred.

Using an XOR rather than the BCF/BSF could have saved a couple of insguction
but in this case, your author wanted to emphasize the shadow register. RAto XO
memory is also a read-modify-write instruction, so there is stiled fier the shadow
register.

We have chosen to use the default linker script provided by Microchip. hy a ve
simple case like this, we can sometimes use the template scripeveipthe
developer should not feel that editing the script is something to be dvdidenost
cases, tailoring the script for the application can make the appficssier to
understand and maintain.

Programming the With the auxiliary board connected to the PIC-EL’s PIC socket, progiagriime

PIC remote part is just like programming the 16F84A on the PIC-EL. You must
remember to select the 16F873 on FPP, but otherwise, throw the programming
switch, tell FPP to program the part, and the LED should flash when the BC-EL
programming switch is returned to the run position.

What if it doesn’t Debugging a PIC circuit is no different than any other circuit. Check idgds and

work cold solder joints. Remove the PIC, and check voltages. With the PIC-Elh swi
the run position, approximately 5 volts should appear at the Vdd and MCLR pins of
the 873. In the program position, the MCLR pin should drop to around zero. Each of
the 5 connected pins on the PIC-EL socket should connect to the pins of éhe sam
name on the 873 socket.

Revised: 11 May 2006 - 01:55 PM Page 15 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

The A/D Converter

Introduction

Now that we know that we can program the 873, it's time to move on to something
more interesting. Since the 84A doesn't have analog inputs, the analog input on the
873 seems like a fun thing to try.

Unfortunately, the only output device we have on our test board is a single LED. So
for our initial experiment, we will simply see if the voltage extssgome threshold,

and turn on the LED if it does. In our third experiment we will do somethingea littl
more interesting.

The student may wish to review section 11 of the datasheet.

Configuring the
A/D

To configure the analog to digital converter, there are two steps we nedd.torhe
first is dealing with ADCONL.

ADCONL1 has two parts. The highest bit, ADFM, controls whether we want the
results left or right justified. The A/D produces a 10-bit resulte fEsult is placed in
two registers, ADRESH and ADRESL. Since there are 16 bits in thestyisiars,
that leaves 6 bits left over, which will be cleared. If we set ADFM to lhitite
order six bits of ADRESH will be set to zero. If we clear ADFM to 0, thedoder
six bits of ADRESL will be set to zero.

ADFM Set
ADRESH ADRESL
[oJoJoJofoJo* P [PP P [* P2 [[°]

(0 G A G G EN G G N

10-bit analog result

ADFM Clear
ADRESH ADRESL
CETFITEEE] [2]o]ofofofo]o]0]

PETIPEEFEER]

10-bit analog result

For our purposes, eight bits of resolution is enough, so we will clear ADFM and
simply ignore the low two bits in ADRESL.

The low order four bits of ADCONL1 determine how we will assign the vabiaof

the RA register. The RA bits might be the digital inputs and outputs wegbttes

used to on the 16F84. But they may also be assigned to analog inputs, and some of
them might be used for analog reference voltages. See the table he2latasheet

Page 16 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

The A/D Converter, Continued

Configuring the to view the various options. We only have RAO connected, so at first glance, we

A/D (continued) might consider any setting for which RAO is an analog input. However, if we have
an unconnected pin whidould be an analog, setting it to be a digital could cause
excessive current to be drawn, potentially damaging the chip. We shouldfset a
unused analog pins to be analog, so PCFGO to PCFG3 should all be clear. (Since the
16F873 doesn’t have a PORTE, setting PCFG1 wouldn’t hurt anything, but for a 40
pin part it would matter). Since we are not providing voltage referencessbedadn
using the PIC’s supply voltage, we don’t want any of the configurations that provide
for reference voltages.

; Set the A/D to left justified, use Vdd, Vss as refs

errorlevel -302
banksel ADCON1 ; Set all to analog since
clrf ADCON1 : AN1-4 all disconnected

The next thing we need to do is set ADCONO. If we were using multiple clsaomel
the A/D, we would do this in our main program loop. However, since we are only
using one channel, it makes sense to set up the A/D for that channel. Thegy the onl
thing we need to do in our main program is to signal the start of the conversion.

The high two bits of ADCONO set the clock for the A/D converter. For siityli

we will use the internal RC clock. The constant ADCOSC sets tivedaits
appropriately. Then, we need to select the A/D channel. We are using chamukl 0,
the constant CHANNELDO sets these bits. Finally, we need to turn on the A/D
converter. ADCON does this.

banksel ADCONO
moviw ADCOSC | CHANNELO | ADCON
movwf ADCONO

That is all the initialization we need to do for the A/D, but don’t forge need to set
PORTC bit 2 as an output to control our LED.

Using the A/D Now that the A/D converter is turned on and ready, there are a few stepatie be
Converter use it. The A/D works by charging a capacitor, then reading the charge on the
capacitor. So, the steps are:

« Wait for the capacitor to charge

e Start the conversion

« Wait for the conversion to complete
¢ Read the result

The time it takes for the capacitor to charge is dependent on the exteruity.
There are equations in the datasheet to figure that out. In our case,dgje wilt be
changing fairly slowly, and we aren’t in a hurry, so we can wait a (relg}ilong

time and call it good. The conversion is begun by setting the GO bit in ADCONO.
When the conversion is complete, the GO bit will be cleared by the hard&areur
code looks like:

Continued on next page

Revised: 11 May 2006 - 01:55 PM Page 17 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160
Elmer 160 Lesson 19.doc In-Circuit Programming

The A/D Converter, Continued

; Hang around a while to charge the cap

Using the A/D decfsz clF ; This is a longer wait
Converter goto Loop ; than needed but easy
(continued) ; Start the conversion
bsf ADCONO,GO ; GO=1 starts conversion
; Wait for conversion to complete
Conv
btfsc ADCONO0,GO : Hardware clears GO
goto Conv ; when A/D complete
; Pick up the value
movf ADRESH,W ; Only using 8 MSBs
movwf ADCval ; of analog value
Comparing the result to some value isn’'t anything special, nor is sendiggutbto
the LED:
clrf LEDstate ; Initially set to on
movlw H'80 ; Compare ADC value
subwf ADCval,W ; to midscale
btfss STATUS,C : Greater?
bsf LEDstate,LED ; No, turn off LED
movf LEDstate, W ; Pick up LED state
movwf PORTC ; and send to LED
Running the After assembling and downloading the program, you should be able to turn the LED
program on and off by turning the pot. Changing the value h’80’ should move the position on
the pot where the LED goes on and off.
The A/D converter, with its 10-bit output, produces a value between 0 and 1023
(decimal). The 0 result is generated when the input is at the regefivence
voltage, in this case, 0 volts, and the 1023 when the input is at Vdd (5 volts). The
range could have been changed by providing reference voltages. The desidgher
for example, have a 0 result represent 1 volt, and 1023 represent 4 volts, by providing
1 and 4 volt reference supplies.
Page 18 of 22 Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming Elmer 160 Lesson 19.doc

Pulse Width Modulation

Introduction Another peripheral found on most PICs is a pulse width modulation output. Certainly
we could do pulse width modulation on a F84 by toggling an output in a loop, but by
providing a peripheral, many PICs make this a low overhead operation.

Pulse width modulation can be useful in a number of applications. Most commonly
PWM is used for motor control, but in hobbyist applications, often thdties

filtered to provide an analog output. The PIC PWM peripheral can generat
frequencies over 200 kHz, making it easy to filter. PWM is also an igdagay to
adjust the brightness of an LED, which is what we will do in our example.

The PIC16F873 has two PWM modules. A few of the 16F parts have three. Some of
the 16 and 24-bit core parts have as many as eight.

Overall Program Since there are only limited peripherals on the little test boagdihbices for testing
Flow are rather limited. The A/D converter could be used to provide an input) wdudd
then be used to adjust the PWM output. The PWM from the CCP1 port will affect
the brightness of the LED, so the feedback from the pot will be immedihis
leads to a program flow like the following:

Initialization Analog Input PWM Output
v
o Wait for | Format
Jialize A Samplin Result

Initialize Start

|
|
|
|
|
|
|
|
PWM | Conversion
|
|
|
|
|
|
|

Set PWM
Duty Cycle

Wait for
Conversion

Read I
A/D |

Setting the Before using the PWM output, it is necessary to set the PWM perioddtheshcy

frequency is 1/period). The PWM module uses timer 2 as it's time base, so tbd jeri
dependent on the oscillator frequency, and the prescale value set f@: TMR
PWM period restarts whenever the TMR2 value reaches the vated gidhe PR2
register, so the PWM period is:

[(PR2)+1] "4 Tosc " (TMR2 prescale value)

Continued on next page

Revised: 11 May 2006 - 01:55 PM Page 19 of 22

Printed: 11 May 2006 - 01:55 PM John J. McDonough, WB8RCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming

Pulse Width Modulation, Continued

Setting the
frequency
(continued)

The TMR2 prescale can have a value up to 16. BRBeloaded with a value as high as
255 (H'FF). Using the values for RC shown onghbeematic gives a clock of about 1.4
MHz, so that leads to a maximum period of abounilliseconds, which ends up at about
an 85 Hz frequency. The resolution of the dutyecigcdependent on the value entered in
PR2, so generally we want a fairly high value ir2PRor our purposes, even 85 Hz is fast
enough that we can't see the LED flashing, so alamsperiod is adequate.

It turns out that we can’t get the PWM output to 100% on if PR2 is set tq sbfif
we want to be able to turn off our LED, the value in PR2 cannot be higher than H'fe

Setting up for
PWM

In order to make PWM work then, we need to set PR2, set CCP1 (PORTC bit 2) to be
an output, turn on TMR2 and set its prescale value, and configure CCP1 for PWM.

; PR2 sets the period

banksel PR2
moviw H'fe' ; Setting period to max
movwf PR2 ; gives max resolution
; Set PWM pin to be an output
movlw B’'11111011' ; Clear TRISC<2>
movwf TRISC ;
; TMR2 prescaler scales the period and duty cycle
banksel T2CON
movlw B'00000101' ; TMR2 on <2>, prescale
movwf T2CON ;1o 1:4 <0:1>
; Configure CCP1 for PWM
movlw H'of' 1 <3:0> all 1's for PWM
movwf CCP1CON ; <5:4> is duty cycle LSB
banksel PORTA

Setting the Duty
Cycle

Now that the frequency for the pulse train has been established, it is netessar
the duty cycle. Since the intent is to control the brightness of thedepBnding on
the pot position, the analog input value can be used to set the duty cycle.

Conveniently, both the A/D converter and the PWM duty cycle have 10 bit
resolution. Somewhat inconveniently, the least significant bitseoP¥WM duty
cycle are located in the middle of the CCP1CON control register.

Note that setting PR2 near full scale gives the full PWM resolutionloifer value
had been chosen for PR2, then the full resolution would not have been available for
the duty cycle. For many applications, a few bits of resolution is adequat

Page 20 of 22

Continued on next page

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

Elmer 160 Lesson 19

In-Circuit Programming

Pulse Width Modulation,

Continued

Elmer 160 Lesson 19.doc

Setting the duty
cycle (continued)

To set the duty cycle it is necessary to read the analog input shlfiehe least
significant bits into the correct position, then send the high and low taytke

correct registers. CCP1RL contains the high eight bits, but CCP1CONnsomdei
only the low two bits, but also 4 bits that configure the CCP port for PWivs& 4
bits must be kept high, so the least significant bits of the analog valudenOfed

with H'Of".
; Save the analog value
movf ADRESH,W
movwf AnaH
movf ADRESL,W
movwf AnalL

; Get top 8 bits
; Save into hi 8 bits

; Grab low 2 bits and
; save into low

; Move the high two bits of AnaL to bits <5:4>

moviw H'cO'
andwf AnalL,F
bcf STATUS,C
rrf AnalL,F
rrf AnalL,F

; Set the high 8 bits of the duty cycle
movf AnaH W
movwf CCPRI1L

; and now the low 8 bits
moviw H'of'
iorwf AnalL,W
movwf CCP1CON

Notice that both the CCPR1L and the CCP1CON registers are in Bank 0, sis there

; First mask off low
; bits of AnaL
; Rotate high one bit
; making sure <7> clear
; Here we know <7> clear

; Set high 8 bits of
; duty cycle

; Need to keep PWM mode
; OR in low analog bits
; and send to CCP1CON

no need to be concerned with bank switching. Also, the duty cycle regigters ar
double-buffered on the chip, so changing the duty cycle will not cause myjtohi

the output.

Testing the
program

While a varying duty cycle pulse is a good choice for changing the brightnass of a

When loaded and run, the LED brightness should vary with the potentiometer
position. If a scope is available, a probe on PIC pin 13 should show a square wave
that varies in duty cycle:

LED, a simple RC filter can change this into a varying DC level forrothe

applications.

Revised: 11 May 2006 - 01:55 PM

Page 21 of 22

Printed: 11 May 2006 - 01:55 PM

John J. McDonough, WB8SRCR

Lesson 19 Elmer 160

Elmer 160 Lesson 19.doc In-Circuit Programming
Wrap Up
Summary In this lesson, we have shown how we can use the PIC-EL as an in-circuit

programmer for our own circuit, even if our circuit should use a differentighpss
more capable, PIC than the 16F84A used in the PIC-EL. We have also examained t
new peripherals, the Analog to Digital Converter, and the Pulse Width ktamul
output.

We are now positioned to design our own circuits using a wider range of PIGs. PIC
may have many peripherals that we haven't touched on yet, but they aresdlilalec
merely by reading the data sheet.

Designers considering more advanced in-circuit serial progragnpnbjects are
encouraged to study Olin Lathrop’s excellent paper on the topic at:

http://www.embedinc.com/picprg/icsp.htm

Coming Up

In the next lesson, we will return to our PIC-EL and examine interrupts. Interrupts
allow us to make our code more responsive, and in many cases, to make it sispler
well.

Page 22 of 22

Revised: 11 May 2006 - 01:55 PM

John J. McDonough, WBSRCR Printed: 11 May 2006 - 01:55 PM

