
Elmer 160 Lesson 3 
First MPLAB Project Elmer 160 Lesson 3.doc 

 

Revised:  08 Dec 2003 - 03:08 PM  Page 1 of 10 
Printed:  08 Dec 2003 - 03:08 PM  John J. McDonough, WB8RCR 

 

Lesson 3 
First MPLAB Project 

Overview 

Introduction In this lesson, we will assemble a short MPLAB program to validate that the 
installation is working correctly. 

In this section The following is a list of topics in this section: 

Topic See Page 

Project Folder 2 

Setting Up a Project 3 

Entering a Program 6 

Assembling the Program 7 

So What Did That Mean 9 

Wrap Up 10 

 
  
 



Lesson 3 Elmer 160 
Elmer 160 Lesson 3.doc First MPLAB Project 

 

Page 2 of 10  Revised:  08 Dec 2003 - 03:08 PM 
John J. McDonough, WB8RCR  Printed:  08 Dec 2003 - 03:08 PM 

 

Project Folder 

Introduction Before we can start to write programs, it’ s handy to set up a folder where we can 
keep our project information. 

Constraints on 
folders 

As we experiment with the PIC we would like a way to keep our projects organized.  
I like to have a Projects folder for all my projects, so that the entire projects folder 
can be quickly and easily backed up. 

It’ s also nice to have several categories of projects.  It might be nice to have a PIC 
projects folder, a SPICE projects folder, and so on.  Within each of those we may 
want to have several further categories. 

However, as we play with various ham related software, we often find ourselves 
using software which wasn’ t developed with the latest and greatest of development 
software.  Software developed by hams may not have been developed or tested with 
the ordinary user in mind.  Indeed, even the MPLAB IDE has some constraints that, 
while perfectly acceptable for developers, might not be obvious to ordinary users. 

When developing a folder structure for these kinds of projects, the following rules 
should be followed: 

• The entire path length should be kept below 51 characters.  Fewer characters 
will give you more flexibility in file names 

• The entire path should consist of folders with names 8 characters or less 

• The entire path should contain no blanks 

Personally, my laptop has a folder tree like: 

C: \ Pr oj ect s 
\ PI C 

\ Lesson1 
\ Lesson2 
… 

\ SPI CE 
… 

This allows me to keep files organized while avoiding long path names that could 
cause me problems with some software. 

A Warning to XP 
users 

In Windows XP, the default is for documents to be placed in ‘My Documents’ .  In 
general, this will not work with MPLAB.  ‘My Documents’  is preceded by 
C:\Documents and Settings\(username)\.  The result is that, depending on the length 
of your user name, you are left with only a few characters to use beneath My 
Documents. 

Further, depending on your configuration, you may need to adjust the privileges on 
the folder you create.  Be sure you have complete privileges to the project folder.   

 



Elmer 160 Lesson 3 
First MPLAB Project Elmer 160 Lesson 3.doc 

 

Revised:  08 Dec 2003 - 03:08 PM  Page 3 of 10 
Printed:  08 Dec 2003 - 03:08 PM  John J. McDonough, WB8RCR 

 

Setting Up a Project 

Introduction Before we can assemble a program, we need to set up a Project.  This is an MPLAB 
construct that collects all the various files that are associated with a particular PIC 
program. 

Launch MPLAB Begin by starting the MPLAB program.  If you chose to have an icon installed on 
your desktop, double-click the bright red MPLAB icon: 

 

Alternatively, select the IDE from the menu: 

 

Create the 
Project 

From the MPLAB menu, select ‘Pr oj ect - >New…’ : 

 
 Continued on next page 



Lesson 3 Elmer 160 
Elmer 160 Lesson 3.doc First MPLAB Project 

 

Page 4 of 10  Revised:  08 Dec 2003 - 03:08 PM 
John J. McDonough, WB8RCR  Printed:  08 Dec 2003 - 03:08 PM 

 

Setting Up a Project, Continued 

Create the 
Project  
(continued) 

In the New Project dialog that appears, type ‘Test’  in the ‘Project Name’  box. 

Click on the ‘Browse…’ button, and navigate to the folder you created as the ‘Root 
of all Projects’  folder.  Click on the New Folder icon: 

 

A new folder will appear, named, appropriately enough, New Folder: 

 

Type ‘Test’  over the folder name. 

 

Double click the icon so that Test appears in ‘Look In:’  

 

and click the ‘Select’  button. 

Selecting the 
Processor 

On the workspace menu, select Conf i gur e- >Sel ect  Devi ce… 

On the drop down in the dialog box, select PIC16F84A.  Click OK. 

This sets the default chip type for the project.  We will override this with a specific 
directive, but choosing it now will prevent an unnecessary message. 

 Continued on next page 

 



Elmer 160 Lesson 3 
First MPLAB Project Elmer 160 Lesson 3.doc 

 

Revised:  08 Dec 2003 - 03:08 PM  Page 5 of 10 
Printed:  08 Dec 2003 - 03:08 PM  John J. McDonough, WB8RCR 

 

Setting Up a Project, Continued 

Adding a file to 
the project 

Select ’Fi l e- >New’ .  A blank window will appear. 

Select ‘Fi l e- >Save As…’ , a file Save As dialog will appear.  Be sure that the 
current folder is your Test folder.  Type Test.asm into the ‘File name:’  box and click 
the ‘Save’  button. 

Select ‘Pr oj ect - >Add Fi l es t o Pr oj ect …’ .  Double-click Test.asm. 

Test.asm will appear under Sour ce Fi l es  in the Test.mcw window: 

 

Select ‘Pr oj ect - >Save Pr oj ect ’ .  Notice that the asterisk next to Test.mcp 
disappears, indicating that there are no unsaved changes to the project. 

 



Lesson 3 Elmer 160 
Elmer 160 Lesson 3.doc First MPLAB Project 

 

Page 6 of 10  Revised:  08 Dec 2003 - 03:08 PM 
John J. McDonough, WB8RCR  Printed:  08 Dec 2003 - 03:08 PM 

 

Entering a Program 

Introduction Before we can test whether the assembler works, we need to have a program to 
assemble.  In this section, we will enter a program. 

Entering Text The assembler recognizes 3 columns.  The columns are separated by any number and 
combination of spaces and tabs.  Generally, it’s more convenient to use tabs as this 
make it easier to keep the columns lined up.  The assembler really doesn’ t care about 
that, but it’ s nice for us humans. 

Type in: 

<t ab><t ab>pr ocessor <t ab>16f 84a<ent er > 

It should look like: 

 

The IDE helps us along by color coding things that it recognizes.  In this case, it 
recognized the word pr ocessor  as an assembler directive, and coded it blue.  The 
processor directive informs the assembler that this code is targeted at the 16f84a.  
Now it knows things like the memory size, number of timers, etc. 

Now add: 

<t ab><t ab>i ncl ude<t ab><t ab><p16f 84a. i nc><ent er > 

This tells the assembler to include a file which contains definitions for the various 
assets of the 16f84a.  This, in turn, allows us to do things like reference port A as 
PORTA rather than H’05’ . 

Finally, let’s add: 

<t ab><t ab>__conf i g<t ab>_HS_OSC & _WDT_OFF & _PWRTE_ON<ent er > 
<t ab><t ab>end<ent er > 

(Notice 2 underbars before config).  Our program should look like: 

 

Almost every program we write will include these four lines, or lines very similar.  
Click on the floppy disk icon (or select Fi l e- >Save) to save the program. 

Also notice that the assembler directives (and opcodes) are colored blue.  If you type 
in a directive and it isn’ t blue, you probably have a typo. 

 



Elmer 160 Lesson 3 
First MPLAB Project Elmer 160 Lesson 3.doc 

 

Revised:  08 Dec 2003 - 03:08 PM  Page 7 of 10 
Printed:  08 Dec 2003 - 03:08 PM  John J. McDonough, WB8RCR 

 

Assembling the Program 

Introduction Remember way back in Lesson 1 we said that an assembler converts text that we can 
(more or less) read into binary data for the computer?  Well, now we are about to do 
that. 

Assembling To perform the assembly, we can select Bui l d Al l  from the Pr oj ect  menu: 

 

Or we can click on the Build All toolbar button: 

 

Or we can press the F10 key while holding down the Ctrl key. 

A new window will pop up with the assembly results.  With a little luck, the last line 
will say: 

BUI LD SUCCEEDED 

 

 Continued on next page 



Lesson 3 Elmer 160 
Elmer 160 Lesson 3.doc First MPLAB Project 

 

Page 8 of 10  Revised:  08 Dec 2003 - 03:08 PM 
John J. McDonough, WB8RCR  Printed:  08 Dec 2003 - 03:08 PM 

 

Assembling the Program, Continued 

What if I did 
something 
wrong? 

Of course, there’s a possibility that we had a typo or something.  The assembler, of 
course, will tell us.  Just to see this behavior, try changing the word i ncl ude to 
something else, say, di ver si f y . 

Assemble the program and see: 

 

Wow, there’s a lot of stuff there. 

First of all, once the assembler sees one error, it can get pretty confused.  In this case, 
it wasn’ t even an error at all, just a warning ‘Found label after column 1.’   What’s it 
thinking? 

Well, sometimes you need to get yourself into the assembler’s head.  It found the 
word ‘diversify’ , and it knew it was neither an instruction nor a directive.  If it’ s 
neither of those, it must be a label.  But it didn’ t start in column one like all good 
labels should, so it warned us about that typo. 

Well now, the next thing after a label should be an instruction.  But the ‘<’  character 
isn’ t allowed in an instruction, so it flags it as an illegal character.  Now things just go 
from bad to worse. 

Whenever you are debugging a program, always start with the first message first.  
There’s a good chance that the later messages, even if they are on different lines, are 
a result of the first. 

In this case, the next 3 errors are on line 3.  The 3 symbols were never defined!  Well, 
no, because we never read the include file since the assembler didn’ t know when we 
said diversify we really meant include. 

 



Elmer 160 Lesson 3 
First MPLAB Project Elmer 160 Lesson 3.doc 

 

Revised:  08 Dec 2003 - 03:08 PM  Page 9 of 10 
Printed:  08 Dec 2003 - 03:08 PM  John J. McDonough, WB8RCR 

 

So What Did That Mean 

Introduction We wrote and assembled a little program with four lines, but we never really 
explained what most of those lines meant.  We’ ll skip pr ocessor , because we 
already talked about that one. 

include The include directive tells the assembler to read another file as if it were typed into 
the current file.  Within the directory we installed MPLAB, there is a folder 
containing a number of these files, and that is where the assembler looks first. 

The most common use for an include file is to describe a number of constants.  In this 
case, there are a pile of constants defined in p16f84a.inc, and they are used 
frequently.  They include, as we mentioned earlier, things like the addresses of some 
of the special registers and the values of various bits in the configuration word (see 
below) and other special registers. 

end The end directive is pretty simple.  It simply marks the end of the source file. 

__config The __config directive is the most interesting of those we have entered so far.  The 
PIC has a configuration word that sets various behaviors, and the __config directive 
sets the value for that configuration word. 

Each bit in the configuration word has a special meaning.  The ‘&’  character between 
the various symbols we entered does a bitwise AND operation between the various 
symbols.  The symbols are defined such that we can AND them in order to set the 
right combination of features into the configuration word. 

_HS_OSC set the bits to use the high speed crystal oscillator.  Other choices were 
_XT_OSC (crystal oscillator), _RC_OSC (RC oscillator), and _LP_OSC (low power 
crystal oscillator). 

_WDT_OFF set the watchdog timer off.  The processor contains a timer that can 
interrupt us every so often, or cause us to wake up if we have put the processor to 
sleep.  Normally we don’ t use this feature, but if we did, we would set this value to 
_WDT_ON. 

_PWRTE_ON told the processor that we want the power up timer enabled.  This 
basically prevents the PIC from executing any instructions until 72 milliseconds have 
gone by.  This gives our external circuitry a chance to stabilize before our program 
actually starts.  We could have said _PWRTE_OFF if we wanted to be Johnny-on-the-
spot when the power came up. 

The final thing we may have done in the configuration word is to set _CP_ON.  This 
would prevent our code from being read back out of the device.  This security feature 
is generally not used in amateur applications since it causes a number of other 
complications. 

 



Lesson 3 Elmer 160 
Elmer 160 Lesson 3.doc First MPLAB Project 

 

Page 10 of 10  Revised:  08 Dec 2003 - 03:08 PM 
John J. McDonough, WB8RCR  Printed:  08 Dec 2003 - 03:08 PM 

 

Wrap Up 

Summary In this lesson, we entered a small program into the IDE.  The program actually did 
nothing, but it was a program.  We assembled it, and even inserted an error so we 
could see the assembler’s behavior when we got an error.  Finally, we talked about 
what each of the four lines do. 

Coming Up In the next lesson, we will explore many of the PIC instructions, and start to get an 
understanding of how we use the file registers and the working register. 

 


