
Elmer 160 Appendix C
Building a Library Elmer 160 Appendix C.doc

Revised: 06 Mar 2005 - 04:34 PM Page 1 of 5
Printed: 06 Mar 2005 - 04:34 PM John J. McDonough, WB8RCR

Appendix C
Building a Library

Overview

Introduction In Lesson 16, we discussed relocatable code, and how to use a library. In this
appendix, we review the mechanics of constructing a library.

In this section Following is a list of topics in this section:

Description See Page

Library Basics 2

For All MPLAB Versions 3

For MPLAB 6.60 and Later 5

Appendix C Elmer 160
Elmer 160 Appendix C.doc Building a Library

Page 2 of 5 Revised: 06 Mar 2005 - 04:34 PM
John J. McDonough, WB8RCR Printed: 06 Mar 2005 - 04:34 PM

Library Basics

Introduction A library is basically a number of object files stuck together to make one file. The
program that deals with libraries is called MPLIB. The basic idea is to feed a group
of object files into MPLIB, which glues them together to a single file.

.o

.o

.o

.lib
MPLIB

MPLIB Switches MPLIB is a command line utility. MPLIB requires at least one command switch to
tell the utility what to do with the library. Besides this switch, there is an optional /q
(for quiet) switch to turn off displays.

The syntax is as follows:

MPLIB [/q] /[ctdrxh] <library> [<list of objects>]

The possible actions are: /c – create, /t – list library contents, /d – delete a member
from the library, /r – add or replace a member in a library, /x – extract a member
from the library, and /h - display a help message.

Elmer 160 Appendix C
Building a Library Elmer 160 Appendix C.doc

Revised: 06 Mar 2005 - 04:34 PM Page 3 of 5
Printed: 06 Mar 2005 - 04:34 PM John J. McDonough, WB8RCR

For All MPLAB Versions

Introduction MPLIB has been available in MPLAB since at least version 4. Creation of a library
using MPLIB as a command line utility is identical for all versions.

Using a batch file Most of the time we will want to not only create the library, but also assemble at least
some of the sources. While we could load the individual modules into the MPLAB
IDE one at a time to assemble them, it is easier if we make a batch file.

Typically, the MPLAB tools won’ t be on our DOS PATH, so we need to spell out
exactly where the executables are. In a .bat file, we could use environment variables
to simplify our task.

Suppose, for example, we wanted to make a library containing only the delay routines
from the LCD library:

: Bat ch f i l e t o bui l d del ay l i br ar y
: MPLAB 7. 01 - JJMcD 2- Mar - 05
@echo of f

SET TOOLS=C: \ Pr ogr am Fi l es\ Mi cr ochi p\ MPASM Sui t e
SET ASM=" %TOOLS%\ MPASMWI N. EXE"
SET LI B=" %TOOLS%\ MPLI B. EXE"
SET ASMFLAGS=/ e+ / l + / x- / c+ / p16F84A / o+ / q

%ASM% %ASMFLAGS% Del 512ms. asm
%ASM% %ASMFLAGS% Del 450ns. asm
%ASM% %ASMFLAGS% Del 40us. asm
%ASM% %ASMFLAGS% Del 2ms. asm
%ASM% %ASMFLAGS% Del 256ms. asm
%ASM% %ASMFLAGS% Del 1S. asm
%ASM% %ASMFLAGS% Del 128ms. asm
%LI B% / C Del ay. l i b Del 512ms. o Del 450ns. o Del 40us. o Del 2ms. o Del 256ms. o
Del 1S. o Del 128ms. o
%LI B% / T Del ay. l i b

Notice how we set a variable, TOOLS, containing the path for MPLAB (your path is
likely to be different). Then we used that to set variables for the assembler and
linker. This is not strictly necessary, it just saves typing and makes the file easier to
change later. If anything in the path includes a space, for example Pr ogr am Fi l es ,
take care with the quote marks!

For version 6.x of MPLAB, the default path is:
SET TOOLS=C: \ Pr ogr am Fi l es\ MPLAB I DE\ MCHI P_Tool s

If all our files and include files fit within DOS 8.3 filenames, we could have used
MPASM instead of MPASMWIN, which is quite a bit faster.

 Continued on next page

Appendix C Elmer 160
Elmer 160 Appendix C.doc Building a Library

Page 4 of 5 Revised: 06 Mar 2005 - 04:34 PM
John J. McDonough, WB8RCR Printed: 06 Mar 2005 - 04:34 PM

For All MPLAB Versions, Continued

Using a Makefile The DOS batch file tends to contain a lot of redundancy, which opens up opportunities for
errors when we make changes. A better solution is to use make, if it is available. make is a
sort of a scripting language that understands dependencies between files, and figures out
how to get the library up to date with the minimum number of steps.

Many compilers include make, and there are a number of implementations of make
available in various freeware libraries. Microsoft, in it’s earlier compilers, included a
version of make which had an unusual syntax. To prevent confusion, Microsoft’s version
of make that uses “normal” makefiles is called nmake.

A makefile to accomplish the same problem the batch file solved would look like:
nMake scr i pt f or bui l di ng Del ay l i br ar y - MPLAB 7. 01

TOOLROOT=C: \ Pr ogr am Fi l es\ Mi cr ochi p\ MPasm Sui t e
ASM=" $(TOOLROOT) \ MPASMWI N. EXE"
LI B=" $(TOOLROOT) \ MPLI B. EXE"
ASMFLAGS=/ e+ / l + / x- / c+ / p16F84A / o+ / q
OBJS=Del 512ms. o Del 450ns. o Del 40us. o Del 2ms. o Del 256ms. o\
 Del 1s. o Del 128ms. o

. SUFFI XES: . asm . o . l i b

. asm. o:
 $(ASM) $(ASMFLAGS) $<

ALL: Del ay. l i b

Del ay. l i b : $(OBJS)
 $(LI B) / C $@ $(OBJS)
 $(LI B) / T $@

The first few lines are very much like in the batch file; they simply set up some variables.
The OBJS variable is a little different in that it consists of the names of the object files that
will be entered in the library. The . SUFFI XES line tells make the order of precedence for
the types of files we are concerned with; that is, you need a .asm to get a .o, and a .o to get a
.lib.

The . asm. o: line is especially interesting. This tells make that any time it is considering a
.o, it should look to see if there is a corresponding .asm. If the .asm is newer (or if the .o
doesn’t exist), then run the assembler on that .asm. The $< is a special variable that means
whatever the dependent happens to be.

The remaining lines are action lines. A line like A: B means A is a target, and B is the
dependent (or dependents). To make an A from a B, run the lines below (which must start
with a tab … 8 spaces don’t count!)

If we don’t tell make what to make, it will make the first thing it encounters, in this case
ALL. To get ALL it needs Delay.lib, and to make ALL from Delay.lib it does nothing.

To get a Delay.lib, make needs $(OBJS) , so it executes statements that look a lot like the
ones we had in the batch file. The $@ is another special variable that means the target, so
$(LI B) / C $@ $(OBJS) expands to:

MPLI B / C Del ay. l i b Del 512ms. o Del 450ns. o Del 40us. o …

Elmer 160 Appendix C
Building a Library Elmer 160 Appendix C.doc

Revised: 06 Mar 2005 - 04:34 PM Page 5 of 5
Printed: 06 Mar 2005 - 04:34 PM John J. McDonough, WB8RCR

For MPLAB 6.60 and Later

Introduction In 6.60, Microchip delivered library build support within the MPLAB IDE. This
makes library construction more similar to other tasks within the IDE.

Setting up the
Project

To build a library, set up a project just like any other. The project name should be the
same as the desired library name, and select a directory like a normal project.

In order to build a library instead of a .hex file, go to

Projects->Build Options->Project

and select the MPASM/C17/C18 Suite tab. On that tab select “Build Library Target” :

Then click OK.

Adding files to
the project

Add assembler source files for the modules to be included in the project just like for a
normal project. However, you do not need a linker script nor any libraries:

Building the
Library

Simply select

Project->Build All

Or click on the build toolbar button. Instead of a .hex file, a .lib will be created.

