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Lesson 14 
Tables 

Overview 

Introduction Frequently, an application needs some sort of table.  There are several ways of 
implementing tables depending on the application requirements.  In this chapter we 
examine some of the more common approaches. 

In this section Following is a list of topics in this lesson: 
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The Program Counter 

Introduction The most common type of PIC table requires that we have a much better 
understanding of the program counter than we have needed previously. 

A Size Problem In this section, we are going to depart from our custom of talking solely about the 
PIC16F84, and talk about some of the larger memory parts.  The reason is that some 
of the handling of the program counter makes more sense when you consider larger 
PICs.  There are some issues that can be ignored for the 16F84, but without seeing 
what happens when program memory exceeds 2K, some of the behavior seems a little 
odd. 

The PIC program counter is 13 bits wide.  On the PIC16F84, only the lower 10 bits 
are decoded since the F84 has only 1K of program memory.  In other words, any 
address above H’3ff’  has its high order bits dropped.  On PICs with 2K of program 
memory, such as the PIC16F628, 11 bits are decoded.  On PICs with 8K, all 13 bits 
are used. 

If you look carefully at the instruction formats in the datasheet, you will notice that 
the cal l  and got o instructions only have 11 bits available for an address.  This 
means that the target of a got o must be within 2K.  Obviously, this could be a 
problem for PICs with more memory. 

But there is a more subtle problem.  Often, as we will see later in this lesson, we 
would like to be able to calculate an address to execute based on something in our 
application.  However, the PIC only deals with 8 bit data.  While we have seen how 
to do arithmetic on larger numbers, the program counter presents a special case.  As 
soon as we store the first byte into the program counter, the next instruction will be 
fetched and executed.  However the address used will be one byte of new address and 
the other byte will be from the old address. Thus we need a technique to write TWO 
bytes simultanously to the program counter. The solution is using a special register 
called PCLATH. 

PCL and 
PCLATH 

The programmer can change the low 8 bits of the program counter directly by writing 
to PCL. However the high 8 bits of the program counter are not writeable.  There is a 
special register, PCLATH, (Program Counter LATch High) which contains the high 
8 bits of the PC.  PCLATH is set to zero on a processor reset, and thereafter can only 
be changed by the programmer. 

Whenever the programmer writes to PCL, the rightmost 5 bits of PCLATH are 
transferred to the high 5 bits of the program counter.  Whenever a cal l  or got o 
instruction is executed, bits 3 and 4 of PCLATH are transferred to bits 11 and 12 of 
the program counter. 
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Tables in Program Memory 

Introduction For most uses of tables, we would like to program the table into the PIC and then 
leave it unchanged.  Since the file register contents are unknown at power up, that 
leaves us with program memory or EEPROM.  EEPROM is fairly clumsy, as we will 
see later, so program memory is a nice choice. 

RETLW The PIC includes an instruction, r et l w, which means return with a literal in W.  
This allows the programmer to specify the contents of W on return from a subroutine.  
Although this may seem at first to be a sort of odd instruction, it can be very valuable 
for implementing a table. 

Structure of a 
table 

In general, when we need a table, we have some value where we want to look up 
some alternate representation.  For example, we may have an angle and want to look 
up its sine, or we may have a letter, and we want to look up its Morse equivalent. 

If the table is going to be maintained in the program memory, this implies that we are 
going to take our index and use it to perform some arithmetic resulting in an address 
to some code that will give us the desired result. 

Since the W is the only convenient register we have for passing results into a 
subroutine, in the simplest of cases, the calling program will pass the index in via the 
W register.  All that remains for the subroutine, then, is to do arithmetic on that value, 
and jump to code that will return the right result. 

Suppose we look at an extremely simple case: 

Sub                    ;  Mul t i pl y by 43 
        addwf    PCL, F 
        r et l w   D’ 0’  
        r et l w   D’ 43’  
        r et l w   D’ 86’  
        r et l w   D’ 129’  
        r et l w   D’ 172’  
        r et l w   D’ 215’  
Mai n 
        movf     Val ue, W 
        cal l     Sub 

Let’s look at what is happening here.  In Mai n, we load the W register with a value, 
which must be between zero and 5.  We then call Sub.  The first instruction in Sub 
adds the contents of the W to the program counter, essentially skipping over as many 
instructions as the value in W. 

 Continued on next page 
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Tables in Program Memory, Continued 

Structure of a 
table  (continued) 

Suppose that Val ue contained a 3.  We would load 3 into the W register, then call 
Sub.  Remember that when we execute an instruction, first the instruction is read into 
the CPU.  Then the program counter is incremented, and finally the instruction is 
executed.  The call to Sub causes the program counter to contain the address of the 
addwf  PCL, F instruction so it is fetched into the CPU.  Next, the program counter is 
incremented, so it contains the address of the r et l w D’ 0’  instruction.  We then 
execute the instruction, which adds 3 to the program counter.  This causes the 
program counter to point to the r et l w D’ 129’  instruction.  On the next cycle, the 
r et l w D’ 129’  instruction is fetched.  It causes a return to the main program with a 
129 in the W register. 

As long as we were confident that Val ue would never contain a value higher than 5, 
this snippet would return (43*Val ue)  in the W register.  If you remember our earlier 
discussion about PCLATH, however, you would recognize that this code will only 
work if the entire table is in the first 256 words of program memory.  There are 
techniques for dealing with tables longer than 256 entries, but they are rarely needed. 

If, however, we wanted to put the table in a different page, we would need to place 
the high order bits of that page in PCLATH before the cal l , otherwise, the addwf  

PCL, F would give the wrong result..  Perhaps more important, we also need to be 
sure we reset PCLATH before the next cal l  or got o. 
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PCLATH Example 

Introduction In order to get a feel for this PCLATH behavior, we will return to the simulator so we 
can watch exactly what is happening.  To give us the greatest range we will use the 
PIC16F877 as an example.  This part has 8K of program memory, so it can use the 
entire range of PCLATH. 

Setting up the 
project 

In order to switch processors, there are two things we want to do.  First, in MPLAB, 
select  the PIC16F877 under the Conf i gur e- >Sel ect  Devi ce menu.  
Secondly, set the processor and include file at the top of the program (Lesson14a). 

Besides our normal configuration bit settings, we will also disable the warning about 
crossing page boundaries so as not to distract us from possible real errors:  
 
  pr ocessor  pi c16f 877 
  i ncl ude p16f 877. i nc 
  __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON 
  er r or l evel  - 306 

Our entire objective in this exercise is to jump around in these page boundaries.  The 
assembler will issue a warning every time we do this, to remind us to fiddle with 
PCLATH.  The er r or l evel  - 306 disables this warning.  Normally, we wouldn’ t do 
this, or we would do it right at the point where we knew we had handled PCLATH. 

A simple Table To begin with, we will move our mainline a little way down in memory so that we 
can have some space to play with later at the start of memory.  In this example, we 
will place the table in page 6.  All it takes to call a table is to place something in the 
W register and do a call.  However, because the table is in page 6, we need to load the 
page number into the PCLATH register: 
  got o  St ar t  
 
;  Mai nl i ne begi ns her e 
  or g   h' 80'  
St ar t  
  movl w  h' 06'   ;  Set up PCLATH f or  a t abl e 
  movwf   PCLATH  ;  i n page 6 
  movl w  D' 2'   ;  Load i ndex i nt o t abl e 
  cal l   Tabl e  ;  r et ur n wi t h r esul t  i n W 
  nop    ;  Just  a chance t o l ook 

The or g h' 80'  statement begins this code 128 (80 hex) locations from the start of the 
program memory. 

 Continued on next page 
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PCLATH Example, Continued 

A simple Table  
(continued) 

Now we will put a simple table in page 6: 
;  Lookup t abl e i n page 6 
;  
;  Ret ur n wi t h D' 16'  t i mes t he W r egi st er  i n W 
 
  or g  h' 600'  
Tabl e 
  addwf   PCL, F 
  r et l w  h' 00'  
  r et l w  h' 10'  
  r et l w  h' 20'  
  r et l w  h' 30'  
  r et l w  h' 40'  
  r et l w  h' 50'  
  r et l w  h' 60'  

Notice that this has the same structure as the table earlier.  In this case, we could have 
just as easily done the math with four r l f  instructions, but this example lets us easily 
see when we return from the table with the correct result. 

Testing the table If we now assemble the code (after adding an end statement of course), we can watch 
PCLATH get loaded with a 6, then we place the 2 into W and call the Tabl e routine at 
location H’600’ .  The 2 gets added to the program counter after the first instruction in 
the Tabl e subroutine.  Notice that the result is H’603’ .  This is because the PC 
actually contains one more than the current location when the instruction is actually 
executed.  The result from the routine ends up being exactly what we expected, 
H’20’ . 

The dt directive The MPASM assembler provides a directive which generates an r et l w instruction for 
each byte of data following the directive.  We can thus save a little typing by 
replacing our table with the following: 

Tabl e 
  addwf  PCL, F 
  dt  h' 00' , h' 10' , h' 20' , h' 30' , h' 40' , h' 50' , h' 60'  

This is especially handy when we want to store a text string in memory: 
Vr sMsg 
  addwf  PCL, F 

   dt  “ Lesson 14a Ver  1. 0”  

PCLATH and 
goto/call 

Before leaving our investigation of the program counter, let’s look at how PCLATH 
affects the cal l  instruction.  This behavior is identical to the got o instruction. 

We will add a simple subroutine that does nothing but return a value we can 
recognize.  We will place copies of that routine at the same offset in several different 
pages, each returning a different value.  This way we can see how the program 
counter behaves over these long distance calls. 

 Continued on next page 
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PCLATH Example, Continued 

PCLATH and 
goto/call  
(continued) 

Add the following code: 
;  Exampl e subr out i ne i n page 0 
 
 or g  h' 50'  
S0050 movl w  h' 00'  
 r et ur n 
 
;  Subr out i ne i n page 7 
 or g  h' 750'  
S0750 movl w  h' 07'  
 r et ur n 
 
;  Subr out i ne i n page 8 
 or g  h' 850'  
S0850 movl w  h' 08'  
 r et ur n 
 
;  Subr out i ne i n page 1f  
 or g  h' 1f 50'  
S1f 50 movl w  h' 1f '  
 r et ur n 

And to call the code, add the following just below the nop: 
;  Show how cal l s move ar ound.   Not e t hat  PCLATH st i l l  
;  cont ai ns a 6,  but  onl y bi t s 3 and 4 ar e used t o f or m 
;  t he t ar get  addr ess of  t he cal l  
 
    ;  Set  somet hi ng i n W.  Even t hough PCLATH 
 movl w  h' f f '  ;  cont ai ns a 6,  cal l  t o page 0 wor ks,  as 
 cal l   S0050 ;  does page 7 because t hey don' t  need  
 cal l   S0750 ;  bi t s 3 and 4.  But  page 8 ends up 
 cal l   S0850 ;  i n t he wr ong pl ace as does page 1f  
 cal l   S1f 50 ;  because bi t s 3 and 4 ar e wr ong 
 nop 
 
;  Let s t r y t hose l ast  t wo cal l s wi t h PCLATH set  cor r ect l y 
 movl w  h' 08'  ;  Set  up PCLATH t o poi nt  t o 
 movwf   PCLATH ;  page 8 
 movl w  h' f f '  ;  Val ue i n W 
 cal l   S0850 ;  Cal l  now goes t o cor r ect  pl ace and 
 nop   ;  r et ur ns wi t h 8 i n W 
 
 movl w  h' 1f '  ;  Now set  up PCLATH t o poi nt  t o 
 movwf   PCLATH ;  page 1f  
 movl w  h' f f '  ;  Val ue i n W 
 cal l   S1f 50 ;  Agai n cal l  ends up i n t he r i ght  pl ace 
 nop   ;  and r et ur ns wi t h 1f  i n W 

After assembling the code, single step through it.  Notice that the third and fourth 
cal l s go to an odd place.  They end up going to the routine at the address which 
would be formed if bits 11 and 12 of the address were clear. 

In the final pair of cal l s, we establish the proper value in PCLATH prior to making 
the cal l , and as a result, the cal l  ends up in the right place. 

 Continued on next page 
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PCLATH Example, Continued 

The pagesel 
directive 

Earlier in the course, we used the banksel  directive to set the bank bits in the file 
register.  There is a similar directive, the pagesel  directive, which sets the page bits 
in the PCLATH register.  It is called by simply following the directive pagesel  with 
the label we wish to jump to. 

Note, however, that the pagesel  directive only sets bits 3 and 4 of PCLATH.  It is 
therefore interesting only if we are planning a got o or cal l .  It is not adequate if we 
wish to do address arithmetic, as in a table.    The directive is therefore only useful 
for processors with more than 2K of program memory. 

The lcall and 
lgoto special 
instructions 

If you have been studying the MPASM Quick Reference, you may have noticed a 
page entitled “12-Bit/14-Bit Core Special Instruction Mnemonics”.  These are not 
really machine instructions, but rather instructions to the assembler to generate 
several machine instructions. 

Two special mnemonics of interest here are l cal l  and l got o.  These set the page 
bits before executing a cal l  or got o.  This adds to the readability of the source (as 
do most of the special instructions).  However, there is a risk with these two in 
particular; they do not reset the page bits on return.  This means that a later cal l  or 
got o will end up on the page referenced in the special instruction, rather than on the 
expected page.   

It is important for the programmer to be sure to reset the PCLATH bits after making 
the jump.  This can be done by explicitly setting the bits, by the use of the pagesel  
directive, or by simply remembering to use l cal l  and l got o the next opportunity. 
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Encoding 

Introduction Up until now, our tables have been fairly simple.  Generally, one would use a table 
when it is difficult or impossible to do the math to translate from the index to the 
desired result.  Sometimes the math is simply too slow.  For example, synthesis chips 
will frequently use a sine table lookup even though it is certainly possible to calculate 
a sine.  However, table lookups are quite fast, and the memory spent on the table may 
well be a reasonable price to pay for the increased performance. 

Non-
mathematical 
codes 

Frequently there is a need to look up something that doesn’ t represent a simple value.  
The bits stored in memory are only ones and zeroes.  They only take on the meaning 
that we apply to them.  There is no rule that says that the byte has to represent a 
number or a letter.  Indeed, there is no rule that says that a byte has to represent only 
one thing.  There are eight bits in a byte, so one could use the byte to represent eight 
different things with possible true/false results.  Or, one could use it to represent two 
things each with 16 possible outcomes.  Or two things, one with 32 possibilities and 
another with 8.  The possibilities are endless, and there is rarely a “best”  way. 

Imagine, for a moment, that we are developing some sort of instrument, say a counter 
or LC meter, and we want to output the result in Morse.  Since we are only outputting 
digits, the problem is simplified somewhat.  Each digit in Morse consists of five 
elements.  If we allow a one bit to represent a dah, and a zero bit to represent a dit, 
then we could encode a Morse digit in five bits of a byte: 

;  Conver t  a di gi t ,  0- 9,  t o Mor se 
Tabl e 
  addwf   PCL, F 
  r et l w  B' 11111000'  ;  0 
  r et l w  B' 01111000'  ;  1 
  r et l w  B' 00111000'  ;  2 
  r et l w  B' 00011000'  ;  3 
  r et l w  B' 00001000'  ;  4 
  r et l w  B' 00000000'  ;  5 
  r et l w  B' 10000000'  ;  6 
  r et l w  B' 11000000'  ;  7 
  r et l w  B' 11100000'  ;  8 
  r et l w  B' 11110000'  ;  9 

Notice that we have left the least significant three bits unused.  There is no law that 
says we need to use up all the bits in a byte.  However, later we will see how to put 
those bits to good use. 

In this example, we could now output Morse by looking up the digit in the table, then 
rotating the result left for each of the five elements.  After each rotation, if the carry 
bit was clear, we would send a dit, if set, we would send a dah. 
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Another Table Example 

Introduction Most of the examples in this lesson are run on the simulator, but let’s take a break 
from that and run one on the hardware.  For this example, we will build on 
Lesson6c.asm.  Copy the .asm file to your Lesson 14 folder, and rename the file to 
Lesson14b.asm.  Also, before you build the project, remember to set the processor 
back to the PIC16F84A in the configuration menu. 

A few small 
tweaks first 

If you recall, in Lesson 6, we wrote a program to send the Morse word “TEST” over 
and over.  We hadn’ t yet learned to program a PIC, so we simply toggled a bit in the 
File Register to represent our code. 

The bit we chose was one that illuminated an LED.  However, it would be nice to 
toggle the keying transistor, so that if we plugged the PIC-EL into a code practice 
oscillator, we could hear our CW. 

In Lesson6c we had a routine to turn on the “ transmitter”  and another routine to turn 
it off.  Let’s begin by modifying the code to toggle the transistor as well as the LED.  
Remember, the sense of the transistor is opposite that of the LED: 

;  Tur n on t he t r ansmi t t er  
Xmi t On 
  bcf   Out put , XMTR 
  bsf   Out put , KEY 
  r et ur n 
;  Tur n of f  t he t r ansmi t t er  
Xmi t Of f  
  bsf   Out put , XMTR 
  bcf   Out put , KEY 
  r et ur n 

We will also need to define KEY, and let’s actually toggle the devices now, so 
instead of using memory for “Output” , let’s equate Output to PORTB: 

XMTR equ  H' 02'  
KEY equ  H' 07'  
Out put  equ  PORTB 
 
 cbl ock  H' 20'  
;   Out put    ;  Out put  byt e t o t r ansmi t t er  

In this case we have simply commented out the old definition for Output. We could 
just as well have deleted it entirely. 

Finally, we want to initialize the output port: 
St ar t  
 c l r f   Out put   ;  I ni t i al i ze out put  of f  
 banksel   TRI SB 
 bcf   TRI SB, XMTR 
 bcf   TRI SB, KEY 
 banksel   PORTB 

When we assemble this code, we will get warning 302 because TRISB is not in bank 
0.  We can disable this warning with er r or l evel  if we wish. At this point, 
programming the PIC with this code should cause the center LED to blink out TEST 
along with the keying transistor. 

 Continued on next page 
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Another Table Example, Continued 

The new 
mainline 

Our old program wrote out the word TEST.  The mainline consisted of calls to 
subroutines for each of the three different letters.  Here, however, we would like to 
have a routine to send a digit, any digit.  So the mainline should look like: 

;  Mai n l oop her e 
Loop 
  movl w  D' 1'  
  cal l   Di gi t  
  movl w  D' 2'  
  cal l   Di gi t  
  movl w  D' 4'  
  cal l   Di gi t  
  movl w  D' 8'  
  cal l   Di gi t  
  cal l   Wor dSpace 
  got o  Loop 

We could have chosen any sequence of digits.  In fact, to be thorough we should test 
every digit. 

Since we are no longer calling the routines SendT, SendE, or SendS, we can delete 
them. 

Generating the 
CW 

We will use the same Table routine we used in the earlier section.  However, let’s 
place the table at location H’300’ , the last page of the 16F84’s memory.  We should 
note that it is customary in PIC16F84 code to place tables in the first page, since this 
eliminates the need to adjust PCLATH.  However, this is not a hard requirement.  The 
only real requirement is that the table be entirely confined to a single page. 

To actually generate the Morse from the table: 
Di gi t  
 movwf   Di gToSend ;  Save di gi t  
 movl w  H' 5'   ;  5 el ement s per  di gi t  
 movwf   Bi t Count  
 movl w  H' 03'   ;  Sel ect  page wi t h 
 movwf   PCLATH  ;  di gi t  t abl e 
 movf   Di gToSend, W ;  Pi ck up t he di gi t  
 cal l   Tabl e  ;  And get  i t ' s  Mor se 
 movwf   Di gToSend ;  Save i t  of f  
 c l r f   PCLATH  ;  and r est or e PCLATH 
Di gLoop 
 r l f   Di gToSend, F ;  Get  next  el ement  
 bt f sc  STATUS, C ;  I s i t  a dah? 
 got o  SendDah  ;  Yes,  send a dah 
 cal l   Di t   ;  No,  send a di t  
 got o  EndLoop 
SendDah cal l   Dah 
EndLoop 
 decf sz  Bi t Count , F ;  Decr ement  el ement  count  
 got o  Di gLoop  ;  Not  done? Do i t  agai n 
 cal l   DahTi me  ;  I nt er - char act er  space 
 r et ur n 

This code should be fairly self-explanatory.  We do a table lookup to translate the 
digit to Morse, taking care to handle PCLATH, keep count of the number of elements 
sent as we rotate the Morse elements into the carry, and depending on the state of the 
carry, send a dit or a dah. The dit and dah code are unchanged from Lesson 6. 
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Tables in File Register 

Introduction Since the file register is volatile, we typically wouldn’ t use it for lookup tables.  
However, there are many times where we want to process lists of data, or data 
elements much longer than 8 bits.  For example, in a counter, we would want to 
calculate the ASCII digits that make up the count to send to the display.  We would 
then index through those results to send them to the display.  This has the same 
characteristics as a table, although the use is different. 

The INDF and 
FSR registers 

To help us make better use of file register memory, there are two special registers we 
can use.  These two registers work together to allow us to access a calculated location 
in the file register memory. 

The FSR register may be loaded with the address of a file register location.  Reading 
or writing the INDF register won’ t affect the INDF register at all, but rather will 
access the file register location whose address is contained in FSR.  This is known as 
“ indirect addressing” .  Both INDF and FSR can be read, written, incremented or 
tested just like any other register. 

Using the file 
register for a 
table 

With these two registers used together, table lookups in the file register memory are 
quite simple.  One merely stores the index into the FSR register, and reads the result 
from the INDF register.  Since the value stored in the FSR is an address, the 
programmer may need to add in the starting address of the table before storing the 
value in FSR.  Since file register tables are most often used for storing long data, 
there would typically be some sort of counter maintained, and the program would 
probably step through the table, rather than looking up a specific value. 

   



Tables  
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc 

 

Revised:  24 Jun 2004 - 08:26 PM  Page 13 of 19 
Printed:  24 Jun 2004 - 08:26 PM  John J. McDonough, WB8RCR 

 

A File Register Example 

Introduction Once again we will turn to the simulator for a simple example.  Create Lesson14c and 
start Lesson14c.asm off with all the normal directives. 

Table Storage To begin with, we need to reserve storage for the lookup table, a counter we will use 
to keep track of where we are, and a result storage location: 

  cbl ock  H' 20'  
   D1   ;  St or age f or  seven 
   D2   ;  el ement  l ong t abl e 
   D3 
   D4 
   D5 
   D6 
   D7 
   I ndex   ;  Count er  i n t abl e 
   Tar get    ;  Resul t  f r om t abl e 
  endc 

Filling the table When we run the simulator, we would like to have something we can recognize as the 
“ right answer”  from the table.  In this example, filling the table is fairly tedious.  It is 
the nature of a table in the file register, however, that we must fill it 
programmatically: 

  got o  St ar t  
  or g  h' 80'  
St ar t  
  movl w  H' 51'   ;  Load up t he 
  movwf   D1  ;  t abl e wi t h ent r i es 
  movl w  H' 52'   ;  f r om 81 t o 87 
  movwf   D2 
  movl w  H' 53'  
  movwf   D3 
  movl w  H' 54'  
  movwf   D4 
  movl w  H' 55'  
  movwf   D5 
  movl w  H' 56'  
  movwf   D6 
  movl w  H' 57'  
  movwf   D7 

(The choice of H’80’  as a location to place the mainline was purely arbitrary). 

Reading the 
table 

Before actually getting data from the table, we need to load the FSR register and 
initialize our counter: 

  movl w  D1  ;  Poi nt  t o addr ess of   
  movwf   FSR  ;  f i r st  ent r y 
  movl w  H' 7'   ;  I ni t i al i ze count  of  
  movwf   I ndex  ;  Ent r i es t o r ead 

Notice that the first movl w gets the address of D1, since it is a literal move, rather than 
the contents. 

 Continued on next page 
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A File Register Example, Continued 

Reading the 
table  (continued) 

Now, we can simply loop through the table, fetching the table value, storing it, and 
moving on to the next entry: 

Loop 
 movf   I NDF, W  ;  Get  val ue f r om t he t abl e 
 movwf   Tar get   ;  and st or e i t  
 i ncf   FSR, F  ;  Poi nt  t o next  ent r y 
 decf sz  I ndex, F  ;  Done? 
 got o  Loop  ;  No,  go back and do next  

In this simple example, we merely stored the result.  In an actual application, we 
would likely have processed the entry in some way.  For example, if this were the 
counter we had talked about in the Lesson14b program, we may well have called our 
Di gi t  routine to send the result out in Morse code, rather than store it in Tar get . 

Testing the table After assembling the program, set a breakpoint just before movl w D1 and open the 
file register window so you can see the results.  When you run down to the breakpoint 
notice that locations H’20’  through H’26’  contain H’51’  through H’57’ .  Stepping 
through the next two instructions will show the FSR (location H’04’) changed to 
H’20’ .  Two more and location H’27’  (I ndex) will be loaded with H’07’ , the number 
of entries in the table. 

Now, entering the loop, the first step will load the first table entry into the W register, 
and the next will store it in Tar get  (H’28’ ).  Stepping further will show the FSR 
incremented, I ndex  decremented, and the next time through the loop the second 
table entry will be processed. 

Although this example is very simple, the technique can be applied to many 
applications. 
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The EEPROM 

Introduction Most of the PIC16 processors include electrically erasable programmable read only 
memory, or EEPROM.  In the case of the PIC16F84A, there are 64 bytes of 
EEPROM available. 

EEPROM combines features of the file register RAM and the program memory 
FLASH.  Like the file register, it can be read and written under program control.  
Like the program memory, it retains its contents when power is removed.  EEPROM 
can be written by the assembler as well as the program, so unlike the previous 
example, the data need not be loaded by the program, if the data is known at the time 
the chip is programmed. 

Reading the 
EEPROM 

Unlike the file register, the EEPROM is accessed through four registers; EEADR, 
EEDATA, EECON1 and EECON2.  In addition, a bit in INTCON is set when a byte 
has been written.  For reading, we need only concern ourselves with EEADR, 
EEDATA, and EECON1. 

Reading data from EEPROM is a three-step process: 

• Set the address to be read in EEADR 

• Set the RD bit in EECON1 

• Read the result from EEDATA 

This process is complicated a bit by the fact that EECON1 is in bank 1 in the 
PIC16F84A. 
  movf   Locat i on, W ;  Set  addr ess i n EEPROM 
  movwf   EEADR  ;  t o r ead 
  banksel   EECON1 
  bsf   EECON1, RD ;  Cause r ead t o happen 
  banksel   EEDATA 
  movf   EEDATA, W ;  Gr ab t he dat a 
 

Important note: In other processors, notably the PIC16F628, these registers are in 
different memory banks, so code for manipulating the EEPROM will not port directly 
between processors. 

Writing EEPROM 
from MPLAB 

MPLAB views the EEPROM as memory starting at address H’2100’ .  It is important 
to note that while MPLAB thinks the addresses start at H’2100’ , the EEPROM 
addresses start at 0.  There are only 64 EEPROM locations in the PIC16F84A, so 
EEPROM addresses run from H’00’  through H’3f’ . 

MPLAB provides a directive, the de directive, to define EEPROM data.  The de 
directive works much like the dt  directive we used earlier; it may be followed by 
bytes of data in a number of formats: 

  or g   H' 2100'  
  de   H' 51'  
  de   “ ABC”  

Notice that while we have the dt to define table data in program memory, and the de 
for EEPROM, there is no equivalent for the file register since that memory is volatile 
and its contents will be random on power up. 
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An EEPROM example 

Introduction Once again we will use the simulator to allow us to see exactly what is going on in 
our first trip through this code.  In this example, we will take the same seven element 
table we used in the previous example.  However, instead of loading the table with a 
sequence of movl w, movwf  instructions, we will load the table from the assembler. 

Reserving file 
register 
locations 

In this example, we no longer need to reserve the locations for our table in the file 
register: 

  cbl ock  H' 20'  
   I ndex 
   Tar get  
   Locat i on 
  Endc  

Initialization As in the earlier example, we still need to initialize the count, and we also want to 
initialize the location in EEPROM we are reading: 

 got o  St ar t  
 or g  h' 80'  
St ar t  
 movl w  H' 7'  
 movwf   I ndex 
 movl w  0 
 movwf   Locat i on 

Reading the 
table 

Again, we will simply read values from the table and store them in Target.  As in the 
previous example, if this were a real application we likely would have done some 
processing as we read the values out: 

Loop 
 movf   Locat i on,  W ;  Locat i on i n EEPROM 
 movwf   EEADR  ;  
 banksel   EECON1  ;  Sel ect  bank f or  EECON1 
 bsf   EECON1, RD ;  I ni t i at e r ead 
 banksel   EEDATA  ;  Back t o bank 0 
 movf   EEDATA, W ;  Pi ck up t he dat a 
 movwf   Tar get   ;  and st or e i t  of f  
 i ncf   Locat i on, F ;  Poi nt  t o next  EEPROM l oc 
 decf sz  I ndex, F  ;  Count  down 
 got o  Loop  ;  Go do next  l ocat i on 

Storing the table 
in EEPROM 

Finally, we need to place the values for our table in EEPROM.  This is easily done: 
  or g  H' 2100'  
  de  H' 51' , H’ 52’ , H’ 53’ , H’ 54’  
  de  H' 55' , H’ 56’ , H’ 57’  

Testing This program runs a lot like the earlier program.  We won’ t belabor the testing 
exercise.  Run it and satisfy yourself that there are no surprises. 
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A Combined Example 

Introduction OK, you know what’s coming.  You are just dying to read a message out of EEPROM and send 
it out in Morse.  Before we do, let’s expand our understanding a bit more. 

Encoding yet 
again 

In Lesson14c, we encoded the Morse digits into the left most 5 bits of our table entries.  Since 
most of the Morse characters are 5 elements or less, we could encode most of the Morse 
alphabet into those 5 bits.  The catch is, how could we differentiate between a dit, a dah, and 
nothing.  It seems we need three states per element. 

We could use those three left over bits to give us the count of the number of bits to use.  Thus, 
we would encode an A as something like: 

01xxxxxx  elements (dit, dah) 
xxxxx010  count (2) 
- - - - - - - -  
01xxx010  result 

where an ‘x’ represents a don’t care bit. 

That takes care of the bulk of our alphabet, but there are quite a few characters with six elements, 
for example, the period and question mark. 

We can cheat.  Many of those six element characters end in a dah.  If we simply use a count of 
six, the ending dah can be shared with the count, and our code won’t really know the difference: 

010101xx  elements (dit, dah, dit, dah, dit, dah) 
xxxxx110  count (6) 
- - - - - - - -  
01010110  result 

We still have a problem with some six element characters, and a seven element character ($). 

We could further build out our table by using a count of zero as a special flag, to mean that the 
leftmost bits are a lookup into a table of six element characters, and handle the lone seven 
element character as a special case (or simply ignore it!) 

Now our table logic would look something like: 
Lookup the letter 
Save off the result 
Mask off the count 
If the count >0 

Rotate the result ‘count’  times 
Sending a dit or dah as needed 

Else 
If the result is >0 

Look up in second table 
If the char is $ 

Count is 7 
Else 

Count is 6 
Rotate the result ‘count’  times 
Sending a dit or dah as needed 

Else 
Send a space 

Wait a letter space 

OK, not terribly simple, but not unmanageable, either. 

 Continued on next page 
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A Combined Example, Continued 

Reviewing the 
Code 

Rather than talking through the long table and most of the code, it is left for the 
student to review the code in Lesson14e.asm.  Most of the code is simply an 
extension of Lesson14b.  However, there are a few items worth mentioning. 

When we place a message into memory, it is generally more convenient to do that in 
ASCII.  There are 128 ASCII characters, but many are non-printing, and most do not 
have Morse representations.  To deal with this, we do a little manipulation of the data 
before looking it up in the table.  Still, however, we want to arrange the table so that 
the order of characters is the same as in ASCII. 

ASCII characters H’00’  through H’1f’  are non-printing characters.  We subtract 
H’20’  from the character before looking up the character.  ASCII characters H’61’  
through H’7a’  are lower-case characters.  There are simple ways to uppercase the 
lowercase characters, but in this program, we have chosen not to do that. 

Another little tricky bit.  In the previous examples we have used a count to tell how 
far to read in the table.  However, here we would like to put a message in the 
EEPROM, and wouldn’ t it be nice if we didn’ t have to count?  Instead, we put a label 
at the end of the message, and stop when our EEPROM address matches the label. 

The problem is that, although the EEPROM addresses go from H’00’  to H’3f’ , the 
assembler views them as starting at H’2100’ , so we need to get rid of the left most 8 
bits of the address before we use it.  Thus, the cryptic: 

EndMsg equ $&H' f f '  

at the end of the message.  What this means is to take the current location ($), AND 
(&) it with H’ ff’ , and assign that value to EndMsg.  The AND operation masks off 
the high order bits. 

Improving the 
code 

Clearly, it is often more readable to use lower case letters, so logic for converting 
lower case numbers to upper would be a nice addition. 

A more ambitious enhancement would be to provide for a way to load the EEPROM 
from the PIC-EL itself.  We won’ t discuss writing to EEPROM, however, for several 
more lessons. 
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Wrap Up 

Summary In this lesson, we have examined a number of way to implement tables on the PIC.  
We have gained a better understanding of the program counter, and seen how to use 
the PCLATH register to help us deal with addresses.  We have used the FSR and 
INDF registers to step through tables in the file register. And we have seen how to 
read the EEPROM and how to load its contents from the assembler. 

Coming Up In the next lesson, we will learn how to read the rotary encoder used on the PIC-EL 
board.  This encoder outputs what is known as “gray code” , and is by far the most 
common type of rotary encoder. 

 


