Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc
Lesson 14
Tables
Overview
Introduction Frequently, an application needs some sort of table. There are several ways of

implementing tables depending on the application requirements. In this chapter we
examine some of the more common approaches.

In this section Following isalist of topicsin thislesson:
Description See Page
The Program Counter 2
Tablesin Program Memory 3
PCLATH Example 5
Encoding 9
Another Table Example 10
Tablesin File Register 12
A File Register Example 13
The EEPROM 15
An EEPROM example 16
A Combined Example 17
Wrap Up 19
Revised: 24 Jun 2004 - 08:26 PM Page 1 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

The Program Counter

Introduction The most common type of PIC table requires that we have a much better
understanding of the program counter than we have needed previoudly.

A Size Problem In this section, we are going to depart from our custom of talking solely about the
PIC16F84, and talk about some of the larger memory parts. The reason isthat some
of the handling of the program counter makes more sense when you consider larger
PICs. There are some issues that can be ignored for the 16F84, but without seeing
what happens when program memory exceeds 2K, some of the behavior seems alittle
odd.

The PIC program counter is 13 bitswide. On the PIC16F84, only the lower 10 bits
are decoded since the F84 has only 1K of program memory. In other words, any
address above H’ 3ff’ hasits high order bits dropped. On PICswith 2K of program
memory, such asthe PIC16F628, 11 bits are decoded. On PICswith 8K, all 13 bits
are used.

If you look carefully at the instruction formats in the datasheet, you will notice that
thecal | and got o instructions only have 11 bits available for an address. This
means that the target of agot o must be within 2K. Obviously, this could be a
problem for PICs with more memory.

But there is a more subtle problem. Often, aswe will seelater in this lesson, we
would like to be able to calculate an address to execute based on something in our
application. However, the PIC only deals with 8 bit data. While we have seen how
to do arithmetic on larger numbers, the program counter presents a special case. As
soon as we store the first byte into the program counter, the next instruction will be
fetched and executed. However the address used will be one byte of new address and
the other byte will be from the old address. Thus we need a technique to write TWO
bytes simultanously to the program counter. The solution isusing a special register

called PCLATH.
PCL and The programmer can change the low 8 bits of the program counter directly by writing
PCLATH to PCL. However the high 8 bits of the program counter are not writeable. Thereisa

special register, PCLATH, (Program Counter LATch High) which contains the high
8 bits of the PC. PCLATH is set to zero on a processor reset, and thereafter can only
be changed by the programmer.

Whenever the programmer writes to PCL, the rightmost 5 bits of PCLATH are
transferred to the high 5 bits of the program counter. Whenever acal | or got o
instruction is executed, bits 3 and 4 of PCLATH are transferred to bits 11 and 12 of
the program counter.

Store to PCL call, goto

) PCLATH
PCLATH PCL [7]6]5]4[3[2]1]0]
[7TeTsT4[3[2[1]0] [7]6[5]4[3]2]1]0]

Instruction

[1o[e]a]7]e[5[a[3]2]1]0]

[12[11]10]9[8[7[6[5]4[3[2]1]0]

Program Counter

[A2[1[10[9[8[7[6[5][4[3[2][1]0]

Program Counter

Page 2 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14

Elmer 160 Lesson 14.doc

Tables in Program Memory

Introduction

For most uses of tables, we would like to program the table into the PIC and then
leave it unchanged. Sincethefile register contents are unknown at power up, that
leaves us with program memory or EEPROM. EEPROM isfairly clumsy, aswe will
see later, so program memory is a nice choice.

RETLW

The PIC includes aninstruction, r et | w, which means return with alitera in W.
This alows the programmer to specify the contents of W on return from a subroutine.
Although this may seem at first to be a sort of odd instruction, it can be very valuable
for implementing atable.

Structure of a
table

In general, when we need atable, we have some value where we want to ook up
some alternate representation. For example, we may have an angle and want to ook
up its sine, or we may have aletter, and we want to look up its Morse equival ent.

If the table is going to be maintained in the program memory, thisimplies that we are
going to take our index and use it to perform some arithmetic resulting in an address
to some code that will give us the desired result.

Since the W isthe only convenient register we have for passing resultsinto a
subroutine, in the smplest of cases, the calling program will pass theindex in viathe
W register. All that remains for the subroutine, then, isto do arithmetic on that value,
and jump to code that will return the right result.

Suppose we look at an extremely simple case:

Sub ; Miultiply by 43
addwf PCL, F
retlw D 0O’
retlw D 43’
retlw D 86’
retlw D 129’
retlw D 172
retlw D 215

Mai n
novf Val ue, W
cal l Sub

Let’slook at what is happening here. In Mai n, we load the W register with avalue,
which must be between zero and 5. Wethen call Sub. Thefirst instructionin Sub
adds the contents of the W to the program counter, essentially skipping over as many
instructions as the valuein W.

Continued on next page

Revised: 24 Jun 2004 - 08:26 PM Page 3 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Tables in Program Memory, Continued

Structure of a Suppose that Val ue contained a 3. We would load 3 into the W register, then call

table (continued) Sub. Remember that when we execute an instruction, first the instruction is read into
the CPU. Then the program counter isincremented, and finally the instruction is
executed. The call to Sub causes the program counter to contain the address of the
addwf PCL, Finstruction so it is fetched into the CPU. Next, the program counter is
incremented, so it contains the address of ther et | w D' 0’ instruction. We then
execute the instruction, which adds 3 to the program counter. This causes the
program counter to pointtotheret | w D 129’ instruction. On the next cycle, the
retlw D 129’ instructionisfetched. It causes areturn to the main program with a
129intheWw register.

Aslong as we were confident that Val ue would never contain a value higher than 5,
this snippet would return (43*Val ue) inthew register. If you remember our earlier
discussion about PCLATH, however, you would recognize that this code will only
work if the entiretableisin thefirst 256 words of program memory. There are
techniques for dealing with tables longer than 256 entries, but they are rarely needed.

If, however, we wanted to put the table in a different page, we would need to place
the high order bits of that pagein PCLATH beforethecal | , otherwise, the addwf
PCL, F would give the wrong result.. Perhaps more important, we also need to be
sure we reset PCLATH beforethenext cal | or got o.

Page 4 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

PCLATH Example

Introduction In order to get afeel for thisPCLATH behavior, we will return to the simulator so we
can watch exactly what is happening. To give usthe greatest range we will use the
PIC16F877 as an example. This part has 8K of program memory, so it can use the
entirerange of PCLATH.

Setting up the In order to switch processors, there are two things we want to do. First,in MPLAB,
project select the PIC16F877 under the Conf i gur e- >Sel ect Devi ce menu.
Secondly, set the processor and include file at the top of the program (Lesson14a).

Besides our normal configuration bit settings, we will also disable the warning about
crossing page boundaries so as not to distract us from possible real errors:

processor pi c16f 877

i ncl ude pl6f877.inc

__config _XT_OSC & WOT_OFF & PWRTE ON
errorlevel - 306

Our entire abjective in this exercise is to jump around in these page boundaries. The
assembler will issue awarning every time we do this, to remind us to fiddle with
PCLATH. Theerrorlevel -306 disablesthiswarning. Normally, we wouldn’t do
this, or we would do it right at the point where we knew we had handled PCLATH.

A simple Table To begin with, we will move our mainline alittle way down in memory so that we
can have some space to play with later at the start of memory. In this example, we
will placethetablein page 6. All it takesto call atableisto place something in the
W register and do acall. However, because thetableisin page 6, we heed to load the
page number into the PCLATH register:

goto Start
Mai nl i ne begins here
org h' 80'
Start
movI| w h' 06’ ; Setup PCLATH for a table
nmovwf PCLATH ; in page 6
movI| w D 2 ; Load index into table
cal l Tabl e : return with result in W
nop ; Just a chance to | ook

Theorg h' 80" statement begins this code 128 (80 hex) locations from the start of the
program memory.

Continued on next page

Revised: 24 Jun 2004 - 08:26 PM Page 5 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

PCLATH Example, Continued

A simple Table Now we will put asimple tablein page 6:
(continued) : Lookup table in page 6

Return with D 16" times the Wregister in W

org h' 600’
Tabl e
addwf PCL, F
retlw h' 00’
retlw h' 10
retlw h' 20
retlw h' 30'
retlw h' 40'
retlw h' 50'
retlw h' 60'

Notice that this has the same structure as the table earlier. In this case, we could have
just as easily done the math with four r | f instructions, but this example lets us easily
see when we return from the table with the correct result.

Testing the table If we now assemble the code (after adding an end statement of course), we can watch
PCLATH get loaded with a6, then we place the 2 into W and call the Tabl e routine at
location H'600’. The 2 gets added to the program counter after the first instruction in
the Tabl e subroutine. Notice that the result isH’603". Thisis because the PC
actually contains one more than the current location when the instruction is actually
executed. The result from the routine ends up being exactly what we expected,
H'20'.

The dt directive ~ The MPASM assembler provides a directive which generatesan r et | winstruction for
each byte of datafollowing the directive. We can thus save alittle typing by
replacing our table with the following:

Tabl e
addwf PCL, F
dt h' 00', h' 10", h' 20", h" 30", h' 40',h' 50', h' 60

Thisis especialy handy when we want to store atext string in memory:

VrsMsg
addwf PCL, F
dt “Lesson 14a Ver 1.0"
PCLATH and Before leaving our investigation of the program counter, let’slook at how PCLATH
goto/call affectsthecal | instruction. Thisbehavior isidentical to the got o instruction.

We will add a simple subroutine that does nothing but return a value we can
recognize. We will place copies of that routine at the same offset in several different
pages, each returning adifferent value. Thisway we can see how the program
counter behaves over these long distance calls.

Continued on next page

Page 6 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

PCLATH Example, Continued

PCLATH and Add the following code:
goto/call

i ; Exanpl e subroutine in page O
(continued)

org h' 50'
S0050 nmovlw h' 00
return

; Subroutine in page 7

org h' 750
S0750 novlw h' 07’
return

; Subroutine in page 8

org h' 850
S0850 nmovlw h' 08’
return

; Subroutine in page 1f

org h' 1f 50'
S1f50 novlw h' 1f"
return

And to call the code, add the following just below the nop:

; Show how cal l's nove around. Note that PCLATH still
; contains a 6, but only bits 3 and 4 are used to form
; the target address of the call

; Set something in W Even though PCLATH
mov| w h' ff' ; contains a 6, call to page 0 works, as
cal | S0050 ; does page 7 because they don't need
cal | S0750 ; bits 3 and 4. But page 8 ends up
cal | S0850 ; in the wong place as does page 1f
cal | S1f 50 ; because bits 3 and 4 are wong
nop

; Lets try those last two calls with PCLATH set correctly

nmovl w h' 08' ; Set up PCLATH to point to

nmovwf PCLATH ; page 8

novl w h' ff' ; Value in W

cal | S0850 ; Call now goes to correct place and
nop ; returns with 8 in W

novl w h' 1f' ; Now set up PCLATH to point to

novwf PCLATH ; page 1f

nmov| w h' ff' ; Value in W

cal | S1f50 ; Again call ends up in the right place

nop and returns with 1f in W

After assembling the code, single step through it. Notice that the third and fourth
cal I sgoto an odd place. They end up going to the routine at the address which
would be formed if bits 11 and 12 of the address were clear.

Inthefinal pair of cal | s, we establish the proper valuein PCLATH prior to making
thecal | , and asaresult, thecal | endsup in theright place.

Continued on next page

Revised: 24 Jun 2004 - 08:26 PM Page 7 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

PCLATH Example, Continued

The pagesel Earlier in the course, we used the banksel directive to set the bank bitsin the file

directive register. Thereisasimilar directive, the pagesel directive, which sets the page bits
in the PCLATH register. Itiscalled by simply following the directive pagesel with
the label we wish to jump to.

Note, however, that the pagesel directive only setsbits3 and 4 of PCLATH. Itis
therefore interesting only if we are planningagot o or cal | . It isnot adequateif we
wish to do address arithmetic, asin atable. The directive istherefore only useful
for processors with more than 2K of program memory.

The Icall and If you have been studying the MPASM Quick Reference, you may have noticed a
Igoto special page entitled “12-Bit/14-Bit Core Specia Instruction Mnemonics’. These are not
instructions really machine instructions, but rather instructions to the assembler to generate

several machine instructions.

Two special mnemonics of interest herearel cal | and | got o. These set the page
bits before executingacal | or got 0. This addsto the readability of the source (as
do most of the special instructions). However, thereisarisk with thesetwo in
particular; they do not reset the page bits on return. This meansthat alater cal | or
got o will end up on the page referenced in the special instruction, rather than on the
expected page.

It isimportant for the programmer to be sure to reset the PCLATH hits after making
the jump. This can be done by explicitly setting the bits, by the use of the pagesel
directive, or by simply rememberingto usel cal | and| got o the next opportunity.

Page 8 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc
Encoding
Introduction Up until now, our tables have been fairly simple. Generally, one would use atable

when it is difficult or impossible to do the math to trandate from the index to the
desired result. Sometimes the math is simply too dow. For example, synthesis chips
will frequently use a sine table lookup even though it is certainly possibleto calculate
asine. However, table lookups are quite fast, and the memory spent on the table may
well be areasonable price to pay for theincreased performance.

Non- Frequently there is aneed to look up something that doesn’t represent asimple value.
mathematical The bits stored in memory are only ones and zeroes. They only take on the meaning
codes that we apply to them. Thereis no rule that saysthat the byte has to represent a

number or aletter. Indeed, thereisno rule that says that a byte has to represent only
onething. There are eight bitsin a byte, so one could use the byte to represent eight
different things with possible true/false results. Or, one could use it to represent two
things each with 16 possible outcomes. Or two things, one with 32 possibilities and
another with 8. The possibilities are endless, and thereisrarely a“best” way.

Imagine, for amoment, that we are devel oping some sort of instrument, say a counter
or LC meter, and we want to output the result in Morse. Since we are only outputting
digits, the problem is simplified somewhat. Each digit in Morse consists of five
eements. If we allow aone bit to represent adah, and a zero hit to represent a dit,
then we could encode a Morse digit in five bits of a byte:

; Convert a digit, 0-9, to Mrse
Tabl e

addwf PCL, F

retlw B' 11111000' ;7 0
retlw B' 01111000' 1
retlw B' 00111000 ;2
retlw B' 00011000 ;3
retlw B' 00001000' ;4
retlw B' 00000000' ;5
retlw B' 10000000 ;6
retlw B' 11000000 ;7
retlw B' 11100000' ; 8
retlw B'11110000' ;9

Notice that we have left the least significant three bits unused. Thereis no law that
says we need to use up al the bitsin abyte. However, later we will see how to put
those bits to good use.

In this example, we could now output Morse by looking up the digit in the table, then
rotating the result |eft for each of the five elements. After each rotation, if the carry
bit was clear, we would send a dit, if set, we would send a dah.

Revised: 24 Jun 2004 - 08:26 PM Page 9 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Another Table Example

Introduction Most of the examplesin this|esson are run on the simulator, but let’ s take a break
from that and run one on the hardware. For this example, we will build on
Lesson6c.asm. Copy the .asm file to your Lesson 14 folder, and rename thefile to
Lessonl4b.asm. Also, before you build the project, remember to set the processor
back to the PIC16F84A in the configuration menu.

A few small If you recall, in Lesson 6, we wrote a program to send the Morse word “ TEST” over
tweaks first and over. We hadn't yet learned to program a PIC, so we simply toggled a bit in the

File Register to represent our code.

The bit we chose was one that illuminated an LED. However, it would be niceto
toggle the keying transistor, so that if we plugged the PIC-EL into a code practice
oscillator, we could hear our CW.

In Lesson6c we had a routine to turn on the “transmitter” and another routine to turn
it off. Let’'sbegin by modifying the code to toggle the transistor aswell asthe LED.
Remember, the sense of the transistor is opposite that of the LED:

; Turn on the transmtter
Xmi t On

bcf Qut put , XMIR
bsf Qut put , KEY
return

; Turn off the transmtter

Xmit O f
bsf Qut put , XMIR
bcf Qut put , KEY
return

We will al'so need to define KEY, and let’s actually toggle the devices now, so
instead of using memory for “Output”, let’ s equate Output to PORTB:

XMIR equ H 02
KEY equ H o7
Cut put equ PORTB
chl ock H 20'

Qut put ; Qutput byte to transmitter

In this case we have simply commented out the old definition for Output. We could
just aswell have deleted it entirely.

Finally, we want to initialize the output port:

Start
clrf Qut put ; Initialize output off
banksel TRI SB
bcf TRI SB, XMIR
bcf TRI SB, KEY
banksel PORTB

When we assembl e this code, we will get warning 302 because TRISB is not in bank
0. We can disablethiswarningwitherror | evel if wewish. At this point,
programming the PIC with this code should cause the center LED to blink out TEST
aong with the keying transistor.

Continued on next page

Page 10 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14

Elmer 160 Lesson 14.doc

Another Table Example, Continued

The new
mainline

Our old program wrote out the word TEST. The mainline consisted of calsto
subroutines for each of the three different letters. Here, however, we would like to
have aroutine to send a digit, any digit. So the mainline should look like:

; Mai n | oop here

Loop
movl w D1
cal | Dig
novl w D2
cal | Digit
movl w D 4
cal | Dig
novl w D8

cal | Digit

cal | Wor dSpace

goto Loop

We could have chosen any sequence of digits. In fact, to be thorough we should test
every digit.

Since we are no longer calling the routines SendT, SendE, or SendS, we can delete
them.

Generating the
CwW

We will use the same Table routine we used in the earlier section. However, let’s
place the table at location H’ 300", the last page of the 16F84's memory. We should
note that it is customary in PIC16F84 code to place tablesin the first page, since this
eliminates the need to adjust PCLATH. However, thisis not a hard requirement. The
only real requirement is that the table be entirely confined to a single page.

To actually generate the Morse from the table:

Digit
novw Di gToSend ; Save digit
nmovl w H 5' ; 5 elenents per digit
nmovwf Bi t Count
novl w H 03’ ; Select page with
novwf PCLATH ; digit table
novf Di gToSend, W ; Pick up the digit
cal | Tabl e ; And get it's Mrse
novwf Di gToSend ; Save it off
clrf PCLATH ; and restore PCLATH

Di gLoop
rlf Di gToSend, F ; Get next el ement
bt fsc STATUS, C ; Is it a dah?
got o SendDah ; Yes, send a dah
cal | Dit ; No, send a dit
got o EndLoop

SendDah cal | Dah

EndLoop
decf sz Bi t Count, F ; Decrenent el enent count
goto Di gLoop ; Not done? Do it again
cal | DahTi ne ; Inter-character space
return

This code should be fairly self-explanatory. We do atable lookup to trand ate the
digit to Morse, taking care to handle PCLATH, keep count of the number of elements
sent as we rotate the Morse elements into the carry, and depending on the state of the
carry, send adit or adah. The dit and dah code are unchanged from Lesson 6.

Revised: 24 Jun 2004 - 08:26 PM Page 11 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Tables in File Register

Introduction Sincethefileregister isvolatile, we typically wouldn’t use it for lookup tables.
However, there are many times where we want to process lists of data, or data
elements much longer than 8 bits. For example, in a counter, we would want to
calculate the ASCII digits that make up the count to send to the display. We would
then index through those results to send them to the display. This has the same
characteristics as atable, dthough the useis different.

The INDF and To help us make better use of file register memory, there are two special registers we
FSR registers can use. Thesetwo registers work together to allow usto access a calculated location
in the file register memory.

The FSR register may be loaded with the address of afile register location. Reading
or writing the INDF register won't affect the INDF register at al, but rather will
access the file register location whose address is contained in FSR. Thisis known as
“indirect addressing”. Both INDF and FSR can be read, written, incremented or
tested just like any other register.

Using the file With these two registers used together, table lookupsin the file register memory are
register for a quite smple. One merely stores the index into the FSR register, and reads the result
table from the INDF register. Since the value stored in the FSR is an address, the

programmer may need to add in the starting address of the table before storing the
valuein FSR. Sincefileregister tables are most often used for storing long data,
there would typically be some sort of counter maintained, and the program would
probably step through the table, rather than looking up a specific value.

Page 12 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

A File Register Example

Introduction Once again we will turn to the simulator for asimple example. Create Lessonl4c and
start Lesson14c.asm off with all the normal directives.
Table Storage To begin with, we need to reserve storage for the lookup table, a counter we will use
to keep track of where we are, and aresult storage location:
cbl ock H 20
D1 ; Storage for seven
D2 ; element long table
D3
>4
D5
D6
D7
| ndex ; Counter in table
Tar get ; Result fromtable

endc

Filling the table When we run the simulator, we would like to have something we can recognize as the
“right answer” from thetable. Inthisexample, filling the tableisfairly tedious. Itis
the nature of atablein the file register, however, that we must fill it
programmetically:

goto Start
org h' 80'
Start
mov| w H 51 ; Load up the
nmovwf D1 ; table with entries
nmovl w H 52 ; from81 to 87
movwf D2
movl w H 53'
nmovw D3
nmov| w H 54
movwf [pY}
movl w H 55
nmovw D5
nmovl w H 56'
nmovwf D6
movl w H 57"
nmovw D7

(The choice of H'80" asalocation to place the mainline was purely arbitrary).

Reading the Before actually getting data from the table, we need to load the FSR register and
table initialize our counter:
movl w D1 ; Point to address of
novwf FSR ; first entry
nmovl w H 7 ; Initialize count of
movwf I ndex ; Entries to read
Notice that the first novl w gets the address of D1, sinceit isaliteral move, rather than
the contents.

Continued on next page

Revised: 24 Jun 2004 - 08:26 PM Page 13 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Tables

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

A File Register Example, Continued

Reading the
table (continued)

Now, we can simply loop through the table, fetching the table value, storing it, and
moving on to the next entry:

Loop

movf | NDF, W ; Get value fromthe table
novwf Tar get ; and store it

i ncf FSR, F ; Point to next entry
decfsz | ndex, F ; Done?

goto Loop ; No, go back and do next

In this simple example, we merely stored the result. In an actua application, we
would likely have processed the entry in some way. For example, if this were the
counter we had talked about in the Lesson14b program, we may well have called our
Di gi t routine to send the result out in Morse code, rather than storeit in Tar get .

Testing the table

After assembling the program, set a breakpoint just before novl w D1 and open the
file register window so you can see the results. When you run down to the breakpoint
notice that locations H' 20’ through H’ 26" contain H'51" through H'57'. Stepping
through the next two instructions will show the FSR (location H’ 04') changed to
H’20'. Two more and location H’27’ (I ndex) will be loaded with H’ 07’ , the number
of entriesin thetable.

Now, entering the loop, the first step will load the first table entry into the W register,
and the next will storeitin Tar get (H'28"). Stepping further will show the FSR
incremented, | ndex decremented, and the next time through the loop the second
table entry will be processed.

Although this exampleis very simple, the technique can be applied to many
applications.

Page 14 of 19

Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc
The EEPROM
Introduction Most of the PIC16 processorsinclude e ectrically erasable programmable read only

memory, or EEPROM. In the case of the PIC16F84A, there are 64 bytes of
EEPROM available.

EEPROM combines features of the file register RAM and the program memory
FLASH. Likethefileregister, it can be read and written under program control.
Like the program memory, it retains its contents when power isremoved. EEPROM
can be written by the assembler as well as the program, so unlike the previous
example, the data need not be loaded by the program, if the datais known at the time
the chip is programmed.

Reading the Unlike the file register, the EEPROM is accessed through four registers, EEADR,

EEPROM EEDATA, EECON1 and EECONZ2. In addition, abitin INTCON is set when a byte
has been written. For reading, we need only concern ourselves with EEADR,
EEDATA, and EECON1.

Reading data from EEPROM is a three-step process:
* Set the addressto be read in EEADR
e SettheRD bitin EECON1
* Read theresult from EEDATA

This processis complicated a bit by the fact that EECON1 isin bank 1 inthe

PIC16F84A.
novf Location, W ; Set address in EEPROM
movwf EEADR ; to read
banksel EECONL
bsf EECONL1, RD ; Cause read to happen
banksel EEDATA
novf EEDATA, W ; Grab the data

Important note: In other processors, notably the PIC16F628, these registers arein
different memory banks, so code for manipulating the EEPROM will not port directly
between processors.

Writing EEPROM MPLAB views the EEPROM as memory starting at address H'2100. It isimportant

from MPLAB to note that while MPLAB thinks the addresses start at H' 2100’ , the EEPROM
addresses start at 0. There are only 64 EEPROM locationsin the PIC16F84A, so
EEPROM addresses run from H'00’ through H’ 3f".

MPLAB provides adirective, thede directive, to define EEPROM data. Thede
directive works much like the dt directive we used earlier; it may be followed by
bytes of datain a number of formats:

org H 2100
de H 51'
de “ ABC’

Notice that while we have the dt to define table datain program memory, and the de
for EEPROM, there is no equivalent for the file register since that memory is volatile
and its contents will be random on power up.

Revised: 24 Jun 2004 - 08:26 PM Page 15 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

An EEPROM example

Introduction Once again we will use the simulator to allow usto see exactly what isgoing onin
our first trip through this code. In this example, we will take the same seven element
table we used in the previous example. However, instead of loading the table with a
sequence of novl w, movwf ingtructions, we will load the table from the assembler.

Reserving file In this example, we no longer need to reserve the locations for our table in thefile
register register:
locations chl ock H 20'
| ndex
Tar get
Locati on
Endc
Initialization Asinthe earlier example, we still need to initialize the count, and we also want to
initialize the location in EEPROM we are reading:
goto Start
org h' 80'
Start
movl w H7
nmovwf I ndex
movl w 0
nmovw Locati on
Reading the Again, we will simply read values from the table and storethem in Target. Asin the
table previous example, if this were areal application we likely would have done some
processing as we read the val ues out:
Loop
novf Location, W ; Location in EEPROM
nmovwf EEADR ;
banksel EECONL ; Sel ect bank for EECONL
bsf EECON1, RD ; Initiate read
banksel EEDATA ; Back to bank O
novf EEDATA, W ; Pick up the data
nmovwf Tar get ; and store it off
i ncf Location, F ; Point to next EEPROM I oc
decfsz I ndex, F ; Count down
got o Loop ; Go do next |ocation
Storing the table Finally, we need to place the values for our tablein EEPROM. Thisiseasily done:
de H51',H 52',H 53, H 54
de H 55',H 56' , H 57’
Testing This program runs alot like the earlier program. We won't belabor the testing

exercise. Run it and satisfy yourself that there are no surprises.

Page 16 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

A Combined Example

Introduction OK, you know whet' scoming. Y ou arejust dying to reed amessage out of EEPROM and send
itoutin Morse. Beforewedo, let’ sexpand our understanding abit more.

Encoding yet In Lesson14c, we encoded the Morse digitsinto the left most 5 bits of our tableentries. Since

again mog of the Morse characters are 5 dements or |ess, we could encode most of theMorse

dphabet into those 5 bits. The catchis, how could we differentiate between adit, adah, and
nothing. It seemswe need three Sates per dement.

We could usethosethree left over bitsto give usthe count of the number of bitstouse. Thus,
wewould encodean A assomething like:

01xxxxxx elements (dit, dah)
XXXxx010 count (2)

01xxx010 result
wherean ‘X’ representsadon’t carebit.

Theat takes care of the bulk of our aphabet, but there are quite afew characterswith Sx dements,
for example, the period and question mark.

Wecan cheat. Many of those Sx dement charactersendinadah. If we smply useacount of

six, the ending dah can be shared with the count, and our codewon't redly know the difference:

010101xx eements (dit, dah, dit, dah, dit, dah)
XXxxx110 count (6)

01010110 result
Wedlill have aproblem with some six dement characters, and aseven dement character ($).

We could further build out our table by using acount of zero as agpedid flag, to mean that the
leftmogt bits are alookup into atable of Sx dement characters, and handlethelone saven
dement character asaspecid case (or Smply ignoreit!)

Now our tablelogic would look something like:

Lookup the letter
Save off the result
Mask off the count
If the count >0
Rotate the result ‘ count’ times
Sending a dit or dah as needed
Else
If theresult is>0
Look up in second table

If thecharis$
Countis7
Else
Count is6

Rotate the result ‘ count’ times
Sending a dit or dah as needed
Else
Send a space
Wait aletter space

OK, not terribly simple, but not unmanageable, either.

Continued on next page

Revised: 24 Jun 2004 - 08:26 PM Page 17 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

A Combined Example, Continued

Reviewing the Rather than talking through the long table and most of the code, it isleft for the
Code student to review the code in Lessonl4e.asm. Most of the codeis simply an
extension of Lesson14b. However, there are afew items worth mentioning.

When we place a message into memory, it is generally more convenient to do that in
ASCII. Thereare 128 ASCII characters, but many are non-printing, and most do not
have Morse representations. To dea with this, we do alittle manipulation of the data
before looking it up in the table. Still, however, we want to arrange the table so that
the order of charactersisthe same asin ASCII.

ASCII characters H'00' through H’ 1f’ are non-printing characters. We subtract
H’ 20" from the character before looking up the character. ASCII characters H' 61’
through H’ 7a are lower-case characters. There are Simple ways to uppercase the
lowercase characters, but in this program, we have chosen not to do that.

Another little tricky bit. In the previous examples we have used a count to tell how
far toread inthetable. However, here we would like to put a message in the
EEPROM, and wouldn't it be nice if we didn’t have to count? Instead, we put alabel
at the end of the message, and stop when our EEPROM address matches the [abel.

The problem is that, although the EEPROM addresses go from H' 00’ to H' 3f’, the
assembler views them as starting at H' 2100, so we need to get rid of the left most 8
bits of the address before we useit. Thus, the cryptic:

EndMsg equ $&H ff'

at the end of the message. What this meansisto take the current location ($), AND
(&) it with H'ff’, and assign that value to EndMsg. The AND operation masks off

the high order bits.
Improving the Clearly, it is often more readable to use lower case |etters, so logic for converting
code lower case numbers to upper would be a nice addition.

A more ambitious enhancement would be to provide for away to load the EEPROM
from the PIC-EL itself. Wewon't discuss writing to EEPROM, however, for severa
more | essons.

Page 18 of 19 Revised: 24 Jun 2004 - 08:26 PM

John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc
Wrap Up
Summary In this lesson, we have examined a number of way to implement tables on the PIC.

We have gained a better understanding of the program counter, and seen how to use
the PCLATH register to help us deal with addresses. We have used the FSR and
INDF registers to step through tables in the file register. And we have seen how to
read the EEPROM and how to load its contents from the assembler.

Coming Up In the next lesson, we will learn how to read the rotary encoder used on the PIC-EL
board. Thisencoder outputs what is known as “gray code”, and is by far the most
common type of rotary encoder.

Revised: 24 Jun 2004 - 08:26 PM Page 19 of 19

Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

