
Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 1 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Lesson 14
Tables

Overview

Introduction Frequently, an application needs some sort of table. There are several ways of
implementing tables depending on the application requirements. In this chapter we
examine some of the more common approaches.

In this section Following is a list of topics in this lesson:

Description See Page

The Program Counter 2

Tables in Program Memory 3

PCLATH Example 5

Encoding 9

Another Table Example 10

Tables in File Register 12

A File Register Example 13

The EEPROM 15

An EEPROM example 16

A Combined Example 17

Wrap Up 19

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 2 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

The Program Counter

Introduction The most common type of PIC table requires that we have a much better
understanding of the program counter than we have needed previously.

A Size Problem In this section, we are going to depart from our custom of talking solely about the
PIC16F84, and talk about some of the larger memory parts. The reason is that some
of the handling of the program counter makes more sense when you consider larger
PICs. There are some issues that can be ignored for the 16F84, but without seeing
what happens when program memory exceeds 2K, some of the behavior seems a little
odd.

The PIC program counter is 13 bits wide. On the PIC16F84, only the lower 10 bits
are decoded since the F84 has only 1K of program memory. In other words, any
address above H’3ff’ has its high order bits dropped. On PICs with 2K of program
memory, such as the PIC16F628, 11 bits are decoded. On PICs with 8K, all 13 bits
are used.

If you look carefully at the instruction formats in the datasheet, you will notice that
the cal l and got o instructions only have 11 bits available for an address. This
means that the target of a got o must be within 2K. Obviously, this could be a
problem for PICs with more memory.

But there is a more subtle problem. Often, as we will see later in this lesson, we
would like to be able to calculate an address to execute based on something in our
application. However, the PIC only deals with 8 bit data. While we have seen how
to do arithmetic on larger numbers, the program counter presents a special case. As
soon as we store the first byte into the program counter, the next instruction will be
fetched and executed. However the address used will be one byte of new address and
the other byte will be from the old address. Thus we need a technique to write TWO
bytes simultanously to the program counter. The solution is using a special register
called PCLATH.

PCL and
PCLATH

The programmer can change the low 8 bits of the program counter directly by writing
to PCL. However the high 8 bits of the program counter are not writeable. There is a
special register, PCLATH, (Program Counter LATch High) which contains the high
8 bits of the PC. PCLATH is set to zero on a processor reset, and thereafter can only
be changed by the programmer.

Whenever the programmer writes to PCL, the rightmost 5 bits of PCLATH are
transferred to the high 5 bits of the program counter. Whenever a cal l or got o
instruction is executed, bits 3 and 4 of PCLATH are transferred to bits 11 and 12 of
the program counter.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 3 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Tables in Program Memory

Introduction For most uses of tables, we would like to program the table into the PIC and then
leave it unchanged. Since the file register contents are unknown at power up, that
leaves us with program memory or EEPROM. EEPROM is fairly clumsy, as we will
see later, so program memory is a nice choice.

RETLW The PIC includes an instruction, r et l w, which means return with a literal in W.
This allows the programmer to specify the contents of W on return from a subroutine.
Although this may seem at first to be a sort of odd instruction, it can be very valuable
for implementing a table.

Structure of a
table

In general, when we need a table, we have some value where we want to look up
some alternate representation. For example, we may have an angle and want to look
up its sine, or we may have a letter, and we want to look up its Morse equivalent.

If the table is going to be maintained in the program memory, this implies that we are
going to take our index and use it to perform some arithmetic resulting in an address
to some code that will give us the desired result.

Since the W is the only convenient register we have for passing results into a
subroutine, in the simplest of cases, the calling program will pass the index in via the
W register. All that remains for the subroutine, then, is to do arithmetic on that value,
and jump to code that will return the right result.

Suppose we look at an extremely simple case:

Sub ; Mul t i pl y by 43
 addwf PCL, F
 r et l w D’ 0’
 r et l w D’ 43’
 r et l w D’ 86’
 r et l w D’ 129’
 r et l w D’ 172’
 r et l w D’ 215’
Mai n
 movf Val ue, W
 cal l Sub

Let’s look at what is happening here. In Mai n, we load the W register with a value,
which must be between zero and 5. We then call Sub. The first instruction in Sub
adds the contents of the W to the program counter, essentially skipping over as many
instructions as the value in W.

 Continued on next page

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 4 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Tables in Program Memory, Continued

Structure of a
table (continued)

Suppose that Val ue contained a 3. We would load 3 into the W register, then call
Sub. Remember that when we execute an instruction, first the instruction is read into
the CPU. Then the program counter is incremented, and finally the instruction is
executed. The call to Sub causes the program counter to contain the address of the
addwf PCL, F instruction so it is fetched into the CPU. Next, the program counter is
incremented, so it contains the address of the r et l w D’ 0’ instruction. We then
execute the instruction, which adds 3 to the program counter. This causes the
program counter to point to the r et l w D’ 129’ instruction. On the next cycle, the
r et l w D’ 129’ instruction is fetched. It causes a return to the main program with a
129 in the W register.

As long as we were confident that Val ue would never contain a value higher than 5,
this snippet would return (43*Val ue) in the W register. If you remember our earlier
discussion about PCLATH, however, you would recognize that this code will only
work if the entire table is in the first 256 words of program memory. There are
techniques for dealing with tables longer than 256 entries, but they are rarely needed.

If, however, we wanted to put the table in a different page, we would need to place
the high order bits of that page in PCLATH before the cal l , otherwise, the addwf

PCL, F would give the wrong result.. Perhaps more important, we also need to be
sure we reset PCLATH before the next cal l or got o.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 5 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

PCLATH Example

Introduction In order to get a feel for this PCLATH behavior, we will return to the simulator so we
can watch exactly what is happening. To give us the greatest range we will use the
PIC16F877 as an example. This part has 8K of program memory, so it can use the
entire range of PCLATH.

Setting up the
project

In order to switch processors, there are two things we want to do. First, in MPLAB,
select the PIC16F877 under the Conf i gur e- >Sel ect Devi ce menu.
Secondly, set the processor and include file at the top of the program (Lesson14a).

Besides our normal configuration bit settings, we will also disable the warning about
crossing page boundaries so as not to distract us from possible real errors:

 pr ocessor pi c16f 877
 i ncl ude p16f 877. i nc
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON
 er r or l evel - 306

Our entire objective in this exercise is to jump around in these page boundaries. The
assembler will issue a warning every time we do this, to remind us to fiddle with
PCLATH. The er r or l evel - 306 disables this warning. Normally, we wouldn’ t do
this, or we would do it right at the point where we knew we had handled PCLATH.

A simple Table To begin with, we will move our mainline a little way down in memory so that we
can have some space to play with later at the start of memory. In this example, we
will place the table in page 6. All it takes to call a table is to place something in the
W register and do a call. However, because the table is in page 6, we need to load the
page number into the PCLATH register:
 got o St ar t

; Mai nl i ne begi ns her e
 or g h' 80'
St ar t
 movl w h' 06' ; Set up PCLATH f or a t abl e
 movwf PCLATH ; i n page 6
 movl w D' 2' ; Load i ndex i nt o t abl e
 cal l Tabl e ; r et ur n wi t h r esul t i n W
 nop ; Just a chance t o l ook

The or g h' 80' statement begins this code 128 (80 hex) locations from the start of the
program memory.

 Continued on next page

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 6 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

PCLATH Example, Continued

A simple Table
(continued)

Now we will put a simple table in page 6:
; Lookup t abl e i n page 6
;
; Ret ur n wi t h D' 16' t i mes t he W r egi st er i n W

 or g h' 600'
Tabl e
 addwf PCL, F
 r et l w h' 00'
 r et l w h' 10'
 r et l w h' 20'
 r et l w h' 30'
 r et l w h' 40'
 r et l w h' 50'
 r et l w h' 60'

Notice that this has the same structure as the table earlier. In this case, we could have
just as easily done the math with four r l f instructions, but this example lets us easily
see when we return from the table with the correct result.

Testing the table If we now assemble the code (after adding an end statement of course), we can watch
PCLATH get loaded with a 6, then we place the 2 into W and call the Tabl e routine at
location H’600’ . The 2 gets added to the program counter after the first instruction in
the Tabl e subroutine. Notice that the result is H’603’ . This is because the PC
actually contains one more than the current location when the instruction is actually
executed. The result from the routine ends up being exactly what we expected,
H’20’ .

The dt directive The MPASM assembler provides a directive which generates an r et l w instruction for
each byte of data following the directive. We can thus save a little typing by
replacing our table with the following:

Tabl e
 addwf PCL, F
 dt h' 00' , h' 10' , h' 20' , h' 30' , h' 40' , h' 50' , h' 60'

This is especially handy when we want to store a text string in memory:
Vr sMsg
 addwf PCL, F

 dt “ Lesson 14a Ver 1. 0”

PCLATH and
goto/call

Before leaving our investigation of the program counter, let’s look at how PCLATH
affects the cal l instruction. This behavior is identical to the got o instruction.

We will add a simple subroutine that does nothing but return a value we can
recognize. We will place copies of that routine at the same offset in several different
pages, each returning a different value. This way we can see how the program
counter behaves over these long distance calls.

 Continued on next page

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 7 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

PCLATH Example, Continued

PCLATH and
goto/call
(continued)

Add the following code:
; Exampl e subr out i ne i n page 0

 or g h' 50'
S0050 movl w h' 00'
 r et ur n

; Subr out i ne i n page 7
 or g h' 750'
S0750 movl w h' 07'
 r et ur n

; Subr out i ne i n page 8
 or g h' 850'
S0850 movl w h' 08'
 r et ur n

; Subr out i ne i n page 1f
 or g h' 1f 50'
S1f 50 movl w h' 1f '
 r et ur n

And to call the code, add the following just below the nop:
; Show how cal l s move ar ound. Not e t hat PCLATH st i l l
; cont ai ns a 6, but onl y bi t s 3 and 4 ar e used t o f or m
; t he t ar get addr ess of t he cal l

 ; Set somet hi ng i n W. Even t hough PCLATH
 movl w h' f f ' ; cont ai ns a 6, cal l t o page 0 wor ks, as
 cal l S0050 ; does page 7 because t hey don' t need
 cal l S0750 ; bi t s 3 and 4. But page 8 ends up
 cal l S0850 ; i n t he wr ong pl ace as does page 1f
 cal l S1f 50 ; because bi t s 3 and 4 ar e wr ong
 nop

; Let s t r y t hose l ast t wo cal l s wi t h PCLATH set cor r ect l y
 movl w h' 08' ; Set up PCLATH t o poi nt t o
 movwf PCLATH ; page 8
 movl w h' f f ' ; Val ue i n W
 cal l S0850 ; Cal l now goes t o cor r ect pl ace and
 nop ; r et ur ns wi t h 8 i n W

 movl w h' 1f ' ; Now set up PCLATH t o poi nt t o
 movwf PCLATH ; page 1f
 movl w h' f f ' ; Val ue i n W
 cal l S1f 50 ; Agai n cal l ends up i n t he r i ght pl ace
 nop ; and r et ur ns wi t h 1f i n W

After assembling the code, single step through it. Notice that the third and fourth
cal l s go to an odd place. They end up going to the routine at the address which
would be formed if bits 11 and 12 of the address were clear.

In the final pair of cal l s, we establish the proper value in PCLATH prior to making
the cal l , and as a result, the cal l ends up in the right place.

 Continued on next page

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 8 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

PCLATH Example, Continued

The pagesel
directive

Earlier in the course, we used the banksel directive to set the bank bits in the file
register. There is a similar directive, the pagesel directive, which sets the page bits
in the PCLATH register. It is called by simply following the directive pagesel with
the label we wish to jump to.

Note, however, that the pagesel directive only sets bits 3 and 4 of PCLATH. It is
therefore interesting only if we are planning a got o or cal l . It is not adequate if we
wish to do address arithmetic, as in a table. The directive is therefore only useful
for processors with more than 2K of program memory.

The lcall and
lgoto special
instructions

If you have been studying the MPASM Quick Reference, you may have noticed a
page entitled “12-Bit/14-Bit Core Special Instruction Mnemonics”. These are not
really machine instructions, but rather instructions to the assembler to generate
several machine instructions.

Two special mnemonics of interest here are l cal l and l got o. These set the page
bits before executing a cal l or got o. This adds to the readability of the source (as
do most of the special instructions). However, there is a risk with these two in
particular; they do not reset the page bits on return. This means that a later cal l or
got o will end up on the page referenced in the special instruction, rather than on the
expected page.

It is important for the programmer to be sure to reset the PCLATH bits after making
the jump. This can be done by explicitly setting the bits, by the use of the pagesel
directive, or by simply remembering to use l cal l and l got o the next opportunity.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 9 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Encoding

Introduction Up until now, our tables have been fairly simple. Generally, one would use a table
when it is difficult or impossible to do the math to translate from the index to the
desired result. Sometimes the math is simply too slow. For example, synthesis chips
will frequently use a sine table lookup even though it is certainly possible to calculate
a sine. However, table lookups are quite fast, and the memory spent on the table may
well be a reasonable price to pay for the increased performance.

Non-
mathematical
codes

Frequently there is a need to look up something that doesn’ t represent a simple value.
The bits stored in memory are only ones and zeroes. They only take on the meaning
that we apply to them. There is no rule that says that the byte has to represent a
number or a letter. Indeed, there is no rule that says that a byte has to represent only
one thing. There are eight bits in a byte, so one could use the byte to represent eight
different things with possible true/false results. Or, one could use it to represent two
things each with 16 possible outcomes. Or two things, one with 32 possibilities and
another with 8. The possibilities are endless, and there is rarely a “best” way.

Imagine, for a moment, that we are developing some sort of instrument, say a counter
or LC meter, and we want to output the result in Morse. Since we are only outputting
digits, the problem is simplified somewhat. Each digit in Morse consists of five
elements. If we allow a one bit to represent a dah, and a zero bit to represent a dit,
then we could encode a Morse digit in five bits of a byte:

; Conver t a di gi t , 0- 9, t o Mor se
Tabl e
 addwf PCL, F
 r et l w B' 11111000' ; 0
 r et l w B' 01111000' ; 1
 r et l w B' 00111000' ; 2
 r et l w B' 00011000' ; 3
 r et l w B' 00001000' ; 4
 r et l w B' 00000000' ; 5
 r et l w B' 10000000' ; 6
 r et l w B' 11000000' ; 7
 r et l w B' 11100000' ; 8
 r et l w B' 11110000' ; 9

Notice that we have left the least significant three bits unused. There is no law that
says we need to use up all the bits in a byte. However, later we will see how to put
those bits to good use.

In this example, we could now output Morse by looking up the digit in the table, then
rotating the result left for each of the five elements. After each rotation, if the carry
bit was clear, we would send a dit, if set, we would send a dah.

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 10 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Another Table Example

Introduction Most of the examples in this lesson are run on the simulator, but let’s take a break
from that and run one on the hardware. For this example, we will build on
Lesson6c.asm. Copy the .asm file to your Lesson 14 folder, and rename the file to
Lesson14b.asm. Also, before you build the project, remember to set the processor
back to the PIC16F84A in the configuration menu.

A few small
tweaks first

If you recall, in Lesson 6, we wrote a program to send the Morse word “TEST” over
and over. We hadn’ t yet learned to program a PIC, so we simply toggled a bit in the
File Register to represent our code.

The bit we chose was one that illuminated an LED. However, it would be nice to
toggle the keying transistor, so that if we plugged the PIC-EL into a code practice
oscillator, we could hear our CW.

In Lesson6c we had a routine to turn on the “ transmitter” and another routine to turn
it off. Let’s begin by modifying the code to toggle the transistor as well as the LED.
Remember, the sense of the transistor is opposite that of the LED:

; Tur n on t he t r ansmi t t er
Xmi t On
 bcf Out put , XMTR
 bsf Out put , KEY
 r et ur n
; Tur n of f t he t r ansmi t t er
Xmi t Of f
 bsf Out put , XMTR
 bcf Out put , KEY
 r et ur n

We will also need to define KEY, and let’s actually toggle the devices now, so
instead of using memory for “Output” , let’s equate Output to PORTB:

XMTR equ H' 02'
KEY equ H' 07'
Out put equ PORTB

 cbl ock H' 20'
; Out put ; Out put byt e t o t r ansmi t t er

In this case we have simply commented out the old definition for Output. We could
just as well have deleted it entirely.

Finally, we want to initialize the output port:
St ar t
 c l r f Out put ; I ni t i al i ze out put of f
 banksel TRI SB
 bcf TRI SB, XMTR
 bcf TRI SB, KEY
 banksel PORTB

When we assemble this code, we will get warning 302 because TRISB is not in bank
0. We can disable this warning with er r or l evel if we wish. At this point,
programming the PIC with this code should cause the center LED to blink out TEST
along with the keying transistor.

 Continued on next page

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 11 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Another Table Example, Continued

The new
mainline

Our old program wrote out the word TEST. The mainline consisted of calls to
subroutines for each of the three different letters. Here, however, we would like to
have a routine to send a digit, any digit. So the mainline should look like:

; Mai n l oop her e
Loop
 movl w D' 1'
 cal l Di gi t
 movl w D' 2'
 cal l Di gi t
 movl w D' 4'
 cal l Di gi t
 movl w D' 8'
 cal l Di gi t
 cal l Wor dSpace
 got o Loop

We could have chosen any sequence of digits. In fact, to be thorough we should test
every digit.

Since we are no longer calling the routines SendT, SendE, or SendS, we can delete
them.

Generating the
CW

We will use the same Table routine we used in the earlier section. However, let’s
place the table at location H’300’ , the last page of the 16F84’s memory. We should
note that it is customary in PIC16F84 code to place tables in the first page, since this
eliminates the need to adjust PCLATH. However, this is not a hard requirement. The
only real requirement is that the table be entirely confined to a single page.

To actually generate the Morse from the table:
Di gi t
 movwf Di gToSend ; Save di gi t
 movl w H' 5' ; 5 el ement s per di gi t
 movwf Bi t Count
 movl w H' 03' ; Sel ect page wi t h
 movwf PCLATH ; di gi t t abl e
 movf Di gToSend, W ; Pi ck up t he di gi t
 cal l Tabl e ; And get i t ' s Mor se
 movwf Di gToSend ; Save i t of f
 c l r f PCLATH ; and r est or e PCLATH
Di gLoop
 r l f Di gToSend, F ; Get next el ement
 bt f sc STATUS, C ; I s i t a dah?
 got o SendDah ; Yes, send a dah
 cal l Di t ; No, send a di t
 got o EndLoop
SendDah cal l Dah
EndLoop
 decf sz Bi t Count , F ; Decr ement el ement count
 got o Di gLoop ; Not done? Do i t agai n
 cal l DahTi me ; I nt er - char act er space
 r et ur n

This code should be fairly self-explanatory. We do a table lookup to translate the
digit to Morse, taking care to handle PCLATH, keep count of the number of elements
sent as we rotate the Morse elements into the carry, and depending on the state of the
carry, send a dit or a dah. The dit and dah code are unchanged from Lesson 6.

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 12 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

Tables in File Register

Introduction Since the file register is volatile, we typically wouldn’ t use it for lookup tables.
However, there are many times where we want to process lists of data, or data
elements much longer than 8 bits. For example, in a counter, we would want to
calculate the ASCII digits that make up the count to send to the display. We would
then index through those results to send them to the display. This has the same
characteristics as a table, although the use is different.

The INDF and
FSR registers

To help us make better use of file register memory, there are two special registers we
can use. These two registers work together to allow us to access a calculated location
in the file register memory.

The FSR register may be loaded with the address of a file register location. Reading
or writing the INDF register won’ t affect the INDF register at all, but rather will
access the file register location whose address is contained in FSR. This is known as
“ indirect addressing” . Both INDF and FSR can be read, written, incremented or
tested just like any other register.

Using the file
register for a
table

With these two registers used together, table lookups in the file register memory are
quite simple. One merely stores the index into the FSR register, and reads the result
from the INDF register. Since the value stored in the FSR is an address, the
programmer may need to add in the starting address of the table before storing the
value in FSR. Since file register tables are most often used for storing long data,
there would typically be some sort of counter maintained, and the program would
probably step through the table, rather than looking up a specific value.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 13 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

A File Register Example

Introduction Once again we will turn to the simulator for a simple example. Create Lesson14c and
start Lesson14c.asm off with all the normal directives.

Table Storage To begin with, we need to reserve storage for the lookup table, a counter we will use
to keep track of where we are, and a result storage location:

 cbl ock H' 20'
 D1 ; St or age f or seven
 D2 ; el ement l ong t abl e
 D3
 D4
 D5
 D6
 D7
 I ndex ; Count er i n t abl e
 Tar get ; Resul t f r om t abl e
 endc

Filling the table When we run the simulator, we would like to have something we can recognize as the
“ right answer” from the table. In this example, filling the table is fairly tedious. It is
the nature of a table in the file register, however, that we must fill it
programmatically:

 got o St ar t
 or g h' 80'
St ar t
 movl w H' 51' ; Load up t he
 movwf D1 ; t abl e wi t h ent r i es
 movl w H' 52' ; f r om 81 t o 87
 movwf D2
 movl w H' 53'
 movwf D3
 movl w H' 54'
 movwf D4
 movl w H' 55'
 movwf D5
 movl w H' 56'
 movwf D6
 movl w H' 57'
 movwf D7

(The choice of H’80’ as a location to place the mainline was purely arbitrary).

Reading the
table

Before actually getting data from the table, we need to load the FSR register and
initialize our counter:

 movl w D1 ; Poi nt t o addr ess of
 movwf FSR ; f i r st ent r y
 movl w H' 7' ; I ni t i al i ze count of
 movwf I ndex ; Ent r i es t o r ead

Notice that the first movl w gets the address of D1, since it is a literal move, rather than
the contents.

 Continued on next page

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 14 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

A File Register Example, Continued

Reading the
table (continued)

Now, we can simply loop through the table, fetching the table value, storing it, and
moving on to the next entry:

Loop
 movf I NDF, W ; Get val ue f r om t he t abl e
 movwf Tar get ; and st or e i t
 i ncf FSR, F ; Poi nt t o next ent r y
 decf sz I ndex, F ; Done?
 got o Loop ; No, go back and do next

In this simple example, we merely stored the result. In an actual application, we
would likely have processed the entry in some way. For example, if this were the
counter we had talked about in the Lesson14b program, we may well have called our
Di gi t routine to send the result out in Morse code, rather than store it in Tar get .

Testing the table After assembling the program, set a breakpoint just before movl w D1 and open the
file register window so you can see the results. When you run down to the breakpoint
notice that locations H’20’ through H’26’ contain H’51’ through H’57’ . Stepping
through the next two instructions will show the FSR (location H’04’) changed to
H’20’ . Two more and location H’27’ (I ndex) will be loaded with H’07’ , the number
of entries in the table.

Now, entering the loop, the first step will load the first table entry into the W register,
and the next will store it in Tar get (H’28’). Stepping further will show the FSR
incremented, I ndex decremented, and the next time through the loop the second
table entry will be processed.

Although this example is very simple, the technique can be applied to many
applications.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 15 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

The EEPROM

Introduction Most of the PIC16 processors include electrically erasable programmable read only
memory, or EEPROM. In the case of the PIC16F84A, there are 64 bytes of
EEPROM available.

EEPROM combines features of the file register RAM and the program memory
FLASH. Like the file register, it can be read and written under program control.
Like the program memory, it retains its contents when power is removed. EEPROM
can be written by the assembler as well as the program, so unlike the previous
example, the data need not be loaded by the program, if the data is known at the time
the chip is programmed.

Reading the
EEPROM

Unlike the file register, the EEPROM is accessed through four registers; EEADR,
EEDATA, EECON1 and EECON2. In addition, a bit in INTCON is set when a byte
has been written. For reading, we need only concern ourselves with EEADR,
EEDATA, and EECON1.

Reading data from EEPROM is a three-step process:

• Set the address to be read in EEADR

• Set the RD bit in EECON1

• Read the result from EEDATA

This process is complicated a bit by the fact that EECON1 is in bank 1 in the
PIC16F84A.
 movf Locat i on, W ; Set addr ess i n EEPROM
 movwf EEADR ; t o r ead
 banksel EECON1
 bsf EECON1, RD ; Cause r ead t o happen
 banksel EEDATA
 movf EEDATA, W ; Gr ab t he dat a

Important note: In other processors, notably the PIC16F628, these registers are in
different memory banks, so code for manipulating the EEPROM will not port directly
between processors.

Writing EEPROM
from MPLAB

MPLAB views the EEPROM as memory starting at address H’2100’ . It is important
to note that while MPLAB thinks the addresses start at H’2100’ , the EEPROM
addresses start at 0. There are only 64 EEPROM locations in the PIC16F84A, so
EEPROM addresses run from H’00’ through H’3f’ .

MPLAB provides a directive, the de directive, to define EEPROM data. The de
directive works much like the dt directive we used earlier; it may be followed by
bytes of data in a number of formats:

 or g H' 2100'
 de H' 51'
 de “ ABC”

Notice that while we have the dt to define table data in program memory, and the de
for EEPROM, there is no equivalent for the file register since that memory is volatile
and its contents will be random on power up.

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 16 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

An EEPROM example

Introduction Once again we will use the simulator to allow us to see exactly what is going on in
our first trip through this code. In this example, we will take the same seven element
table we used in the previous example. However, instead of loading the table with a
sequence of movl w, movwf instructions, we will load the table from the assembler.

Reserving file
register
locations

In this example, we no longer need to reserve the locations for our table in the file
register:

 cbl ock H' 20'
 I ndex
 Tar get
 Locat i on
 Endc

Initialization As in the earlier example, we still need to initialize the count, and we also want to
initialize the location in EEPROM we are reading:

 got o St ar t
 or g h' 80'
St ar t
 movl w H' 7'
 movwf I ndex
 movl w 0
 movwf Locat i on

Reading the
table

Again, we will simply read values from the table and store them in Target. As in the
previous example, if this were a real application we likely would have done some
processing as we read the values out:

Loop
 movf Locat i on, W ; Locat i on i n EEPROM
 movwf EEADR ;
 banksel EECON1 ; Sel ect bank f or EECON1
 bsf EECON1, RD ; I ni t i at e r ead
 banksel EEDATA ; Back t o bank 0
 movf EEDATA, W ; Pi ck up t he dat a
 movwf Tar get ; and st or e i t of f
 i ncf Locat i on, F ; Poi nt t o next EEPROM l oc
 decf sz I ndex, F ; Count down
 got o Loop ; Go do next l ocat i on

Storing the table
in EEPROM

Finally, we need to place the values for our table in EEPROM. This is easily done:
 or g H' 2100'
 de H' 51' , H’ 52’ , H’ 53’ , H’ 54’
 de H' 55' , H’ 56’ , H’ 57’

Testing This program runs a lot like the earlier program. We won’ t belabor the testing
exercise. Run it and satisfy yourself that there are no surprises.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 17 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

A Combined Example

Introduction OK, you know what’s coming. You are just dying to read a message out of EEPROM and send
it out in Morse. Before we do, let’s expand our understanding a bit more.

Encoding yet
again

In Lesson14c, we encoded the Morse digits into the left most 5 bits of our table entries. Since
most of the Morse characters are 5 elements or less, we could encode most of the Morse
alphabet into those 5 bits. The catch is, how could we differentiate between a dit, a dah, and
nothing. It seems we need three states per element.

We could use those three left over bits to give us the count of the number of bits to use. Thus,
we would encode an A as something like:

01xxxxxx elements (dit, dah)
xxxxx010 count (2)
- - - - - - - -
01xxx010 result

where an ‘x’ represents a don’t care bit.

That takes care of the bulk of our alphabet, but there are quite a few characters with six elements,
for example, the period and question mark.

We can cheat. Many of those six element characters end in a dah. If we simply use a count of
six, the ending dah can be shared with the count, and our code won’t really know the difference:

010101xx elements (dit, dah, dit, dah, dit, dah)
xxxxx110 count (6)
- - - - - - - -
01010110 result

We still have a problem with some six element characters, and a seven element character ($).

We could further build out our table by using a count of zero as a special flag, to mean that the
leftmost bits are a lookup into a table of six element characters, and handle the lone seven
element character as a special case (or simply ignore it!)

Now our table logic would look something like:
Lookup the letter
Save off the result
Mask off the count
If the count >0

Rotate the result ‘count’ times
Sending a dit or dah as needed

Else
If the result is >0

Look up in second table
If the char is $

Count is 7
Else

Count is 6
Rotate the result ‘count’ times
Sending a dit or dah as needed

Else
Send a space

Wait a letter space

OK, not terribly simple, but not unmanageable, either.

 Continued on next page

 Tables
Elmer 160 Lesson 14.doc Elmer 160 Lesson 14

Page 18 of 19 Revised: 24 Jun 2004 - 08:26 PM
John J. McDonough, WB8RCR Printed: 24 Jun 2004 - 08:26 PM

A Combined Example, Continued

Reviewing the
Code

Rather than talking through the long table and most of the code, it is left for the
student to review the code in Lesson14e.asm. Most of the code is simply an
extension of Lesson14b. However, there are a few items worth mentioning.

When we place a message into memory, it is generally more convenient to do that in
ASCII. There are 128 ASCII characters, but many are non-printing, and most do not
have Morse representations. To deal with this, we do a little manipulation of the data
before looking it up in the table. Still, however, we want to arrange the table so that
the order of characters is the same as in ASCII.

ASCII characters H’00’ through H’1f’ are non-printing characters. We subtract
H’20’ from the character before looking up the character. ASCII characters H’61’
through H’7a’ are lower-case characters. There are simple ways to uppercase the
lowercase characters, but in this program, we have chosen not to do that.

Another little tricky bit. In the previous examples we have used a count to tell how
far to read in the table. However, here we would like to put a message in the
EEPROM, and wouldn’ t it be nice if we didn’ t have to count? Instead, we put a label
at the end of the message, and stop when our EEPROM address matches the label.

The problem is that, although the EEPROM addresses go from H’00’ to H’3f’ , the
assembler views them as starting at H’2100’ , so we need to get rid of the left most 8
bits of the address before we use it. Thus, the cryptic:

EndMsg equ $&H' f f '

at the end of the message. What this means is to take the current location ($), AND
(&) it with H’ ff’ , and assign that value to EndMsg. The AND operation masks off
the high order bits.

Improving the
code

Clearly, it is often more readable to use lower case letters, so logic for converting
lower case numbers to upper would be a nice addition.

A more ambitious enhancement would be to provide for a way to load the EEPROM
from the PIC-EL itself. We won’ t discuss writing to EEPROM, however, for several
more lessons.

Tables
Elmer 160 Lesson 14 Elmer 160 Lesson 14.doc

Revised: 24 Jun 2004 - 08:26 PM Page 19 of 19
Printed: 24 Jun 2004 - 08:26 PM John J. McDonough, WB8RCR

Wrap Up

Summary In this lesson, we have examined a number of way to implement tables on the PIC.
We have gained a better understanding of the program counter, and seen how to use
the PCLATH register to help us deal with addresses. We have used the FSR and
INDF registers to step through tables in the file register. And we have seen how to
read the EEPROM and how to load its contents from the assembler.

Coming Up In the next lesson, we will learn how to read the rotary encoder used on the PIC-EL
board. This encoder outputs what is known as “gray code” , and is by far the most
common type of rotary encoder.

